
Report No. 370-3

SOUPAC PROGRAM DESCRIPTIONS

STATISTICALLY ORIENTED USERS PROGRAMMING AND CONSULTING

March 1, 1971

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

519.92
I46s

The person charging this material is re-

sponsible for its return on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books

are reasons for disciplinary action and may
result in dismissal from the University.

University of Illinois Library

MAY 1 6 197'

JUL 2 6 1979

fMY2l

AUG 20
-2

o m\

981
1983

L161— O-1096

J5
Q^<^Y^C^ \JfUO-jP-A~~rX-

This manual has been prepared by the Statistical Consultants

of the Department of Computer Science, University of Illinois (Urbana Campus),

as documentation for the system of statistical programs known as SOUPAC.

SOUPAC has been written by the statistical consultants of this department in

an effort to provide a broad range of standard statistical procedures which

are of use to the academic community at large. Inquiries about SOUPAC

should be directed to 138 Digital Computer Laboratory.

PROGRAM LIST

February, 1971

AUTOCORRELATION AND SPECTRAL ANALYSIS
BALANOVA 5

BINORMAMIN
BISERIAL CORRELATION
CANONICAL ANALYSIS
CENTROID FACTOR ANALYSIS
CLASSIFICATION
CLIQUE ANALYSIS
COMMUNALITY ESTIMATION
CORRELATION
DISCRIMINANT ANALYSIS
ECONOMETRIC REDUCED FORM AND RESIDUAL ANALYSIS
FREQUENCY COUNTING - MEASURES OF ASSOCIATION
FIT (CHI SQUARE GOODNESS-OF-FIT TEST)
ITERATIVE FACTOR ANALYSIS
JACOBI (Eigenvalues and Eigenvectors)
K - CLASS ESTIMATION
KOLMOGOROV-SMIRNOV
LINEAR PROGRAMMING
MATRIX OPERATIONS
MISSING DATA CORRELATION
MULTIPLE CORRELATION
OBLIMAX
PAIRED COMPARISONS
PARTIAL CORRELATION
PRINCIPAL AXIS FACTOR ANALYSIS
PROBIT (Maximum Likelihood Regression)
PROCRUSTES
QUADRATIC PROGRAMMING
RANDOM NUMBER GENERATOR
RANKING
SCALOGRAM ANALYSIS
SQUARE ROOT FACTOR ANALYSIS
STANDARD SCORES
STEP-WISE MULTIPLE CORRELATION
THREE MODE FACTOR ANALYSIS
THREE-STAGE LEAST SQUARES
TRANSFORMATIONS
T-TESTS
UNRESTRICTED MAXIMUM LIKELIHOOD FACTOR ANALYSIS
VARIMAX

Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/soupacprogramdesOOuniv

TABi_,E OF CONTENTS

A. Introduction

1. Introduction to SOUPAC
2. Options to a SOUPAC Job
3. SOUPAC Input-Output and Temporary Storage
h. Using Owner Storage Devices with SOUPAC

5. Cross-Reference
6. Temporary Program Data Size Restrictions

B. Data and Matrix Manipulations Package

1. Introduction
2. MATRIX
3. TRANSFORMATIONS

C. Basic Population Statistics Package

1

.

FREQUENCY
2. RANK
3. STANDARD SCORES

D. Analysis of Variance Package

1. BALANOVA 5

2. CLASSIFICATION
3. DISCRIMINANT
k. T-TEST

E. Correlations and Regression Package

1. BISERIAL CORRELATION
2. CANONICAL ANALYSIS
3. CORRELATION
k. MISSING DATA CORRELATIONS
5. MULTIPLE CORRELATIONS
6. PARTIAL CORRELATIONS
7. STEP-WISE MULTIPLE REGRESSION

F. Distribution Analysis Package

1. FIT
2

.

KOLMOGOROV-SMIRNOV

G. Factor Analysis Package

1. Introduction
2

.

BINORMAMIN
3. CENTROID FACTOR ANALYSIS
h. COMMUNALITY ESTIMATION
5. ITERATIVE FACTOR ANALYSIS
6. JACOBI

T

•

OBLIMAX
8. PRINCIPAL AXIS FACTOR ANALYSIS
9

•

PROCRUSTES
10. SQUARE ROOT FACTOR ANALYSIS
11. THREE MODE FACTOR ANALYSIS
12. UNRESTRICTED MAXIMUM LIKELIHOOD FACTOR ANALYSIS
13. VARIMAX FACTOR ROTATION

TABLE OF CONTENTS
(continued)

H. Econometrics Package

1. ECONOMETRIC REDUCED FORM AND RESIDUAL ANALYSIS
2. K-CLASS ESTIMATION
3. LINEAR PROGRAMMING
k. QUADRATIC PROGRAMMING
5. THREE STAGE LEAST SQUARES ESTIMATION

I. Spectral Analysis Section

1 . AUTOCORRELATIONS

J. Scale Analysis Package

1. CLIQUE ANALYSIS
2. PAIRED COMPARISONS
3

.

SCALOGRAM

K. ProMt Analysis Section

1 . PROBIT

L. Random Number Generation Section

1. RANDOM NUMBER GENERATOR

M. UTILITY

INTRODUCTION TO SOUPAC

A USER'S GUIDE

A SOUPAC program consists, at least, of (l) IBM 360 system statements,
and (2) SOUPAC statements. The IBM 360 system statements are used to give
instructions to the 360 computer, and the SOUPAC statements are used to
describe the types of data manipulations and statistical analyses that
are to be performed. The set of SOUPAC statements in one job is called a
SOUPAC parameter deck, and it will include references to one or more
individual SOUPAC programs. Note all cards should be punched on an IBM 029
keypunch

.

Every 360 system statement must be on a separate card and must have the

characters // or /* in columns 1 and 2. In particular, the system cards

for a SOUPAC job are listed here, in the order they must appear:

CARD 1 /*ID accounting information

CARD 2 // EXEC SOUPAC

CARD 3 //SYSIN DD *

SOUPAC parameter deck

CARD k /*

Note that these four cards are an absolute minimum.

CARD 1

The /*ID card is punched on a yellow striped card available in the

keypunch area. This card has no clipped corners and is used only as an

ID card for jobs to be run on the 36O. The first five columns of this card

must contain the characters /*ID followed by a blank. This is the only

card in your deck which must be punched on a special card; the rest of your

deck may be punched on any of the standard corner cut cards found in the

keypunch area.

Sample ID cards

:

/*ID PS=9999,DEPT=AGRON,NAME=SMITH

/*ID NAME= ' B0B_SMITH
'
, PS=8899, DEPT=VOTEC, LINES=5000

/*ID C0DE=SWITCH, PS=9988,NAME=STEPPENWULF,DEPT=REC

The accounting information consists of the following keywords and
responses

:

KEYWORD RESPONSE

necessary

PS= your problem specification number

DEPT= your department

NAME= your name

KEYWORD RESPONSE

optional

(min, sec)

TIME=(,sec)
min

IOREQ=n

CODE=ZZZZZ

LINES=XXXXX

CARDS=XXXX

the optional TIME parameter on the
ID card is the estimate of execution
time for the job. By default it is

1 minute. The time estimate on the
ID card is the time estimate for the
SOUPAC job. If there is a time
estimate on the // EXEC SOUPAC card
there must be at least as much time
on the ID card.

where n is the number of INPUT/OUTPUT
requests. The default is 1000.

Moving from cards to a temporary
storage location generates one I/O
request per observation. Moving
to or from a temporary storage
location generates two I/O requests
per observation. Cards read in or

lines printed out do not generate
I/O requests. The interactive nature
of SOUPAC programs often necessitates
considerable amounts of data transfer.
For this reason, I/O requests for
SOUPAC jobs are relatively large.

code is the signal that your problem
specification number is code word
protected. If you have code word
protection, get the code word from
your approved problem specification
request form. If you do not have

code word protection, do not use the

keyword CODE.

you requested XXXXX lines of output.

The default is 2000.

you requested XXXX cards punched.
The default is NONE.

There must be no blank spaces in the accounting information and the order
of the accounting information makes no difference. Blanks in a name, such
as JOHN USER, are not allowed. The name must be only one word or of the
form JOHNUSER. If blanks are desired, then the name must be enclosed in
apostrophes and an underscore substituted for the blank, e.g. 'J0HN_USER'.

Note further that commas separate keywords from responses to keywords
and that the equal sign is a part of the keyword response. Furthermore,
your ID card parameters may not go beyond column 71 • To continue an ID card
put a comma after the last parameter that will fit completely into 71 columns

-3-

or less and proceed on a second card which has the characters /* punched in

columns 1 and 2, followed by at least one blank. This second card may be

any standard corner cut card.

Further information about additional parameters is available from either

the Service Programming Area or the SOUPAC office.

CARD 2

The // EXEC SOUPAC is punched as in the example on page 1 with two

slashes in columns 1 and 2? followed by at least one blank. This is

followed by the word EXEC, at least one blank, and then the word SOUPAC.

There is in fact another way to get a SOUPAC job. One can say:

// EXEC SOUP

//SYSIN DD *

The essential differences are these: SOUPAC has 15 available temporary
storage locations; SOUP has only 5 temporary storage locations. SOUP,

however, runs about five seconds faster than SOUPAC and is generally
recommended for users who do not require more temporary storage locations

than SI through S5.

The amount of memory to be used is specified on each // EXEC SOUPAC

or // EXEC SOUP card rather than on the ID card. SOUPAC jobs are given
a default region of 150K which is adequate for nearly all SOUPAC jobs.

See sections on options to a SOUPAC job.

CARD 3

The next card is copied as in the example with //SYSIN beginning in

column 1 and extending through 7 without any blanks. This is followed by at

least one blank, the two characters DD, at least one blank, finally the
character *.

SOUPAC Statements

The SOUPAC parameter deck is divided into two main sections. The

first consists of the problem program parameter cards. Individual problem
program write-ups are available to users through the SOUPAC office. The
last card of the problem program parameter cards must always contain the words

END SOUPAC as the first non-blank characters. The END SOUPAC card is

immediately followed by any data decks you may have. All data decks are

preceded by a DATA format card and followed by an END# card. The format

card has the word DATA as the first four non-blank characters. After the word
DATA may be any comments the user may want, if any. These comments will
be printed on the user's output, but will be otherwise ignored by SOUPAC.

Next comes the data card parameters. The user must specify the number of

variables per row of data to be input, and also may optionally specify the

number of rows of data(observations) . Following this information is a

standard FORTRAN type format enclosed in parentheses. This is the format

-k-

which describes the structure of the data deck it precedes. The following
forms of the data format card are valid:

DATA(observations ,variables) (format string£_592 non-blank characters)

DATA (,variables) (format string£_592 non-blank characters)

DATA(variables) (format string£592 non-blank characters)

Remember that all data decks must be terminated by END# as the first
four non-blank characters on a single card.

Data used for calculations should be read in either E or F format.
Data not used for calculations can be read in any format.

END CAEDS

Within a SOUPAC parameter deck, three types of END cards are used:

END#: This card is used to end each data deck which appears. For each
DATA format card used, there must be a corresponding END# card
at the end of the data deck.

END S: This card appears once and only once per SOUPAC parameter deck
and must appear as the last card in the parameter deck. Its function
is to separate the SOUPAC parameter deck from the data decks.

END P: This card is used to indicate the end of any program which requires
subparameter cards and must appear for all such programs. (in this
context $-control cards are not taken to be subparameter cards).
Any program which needs the END P card explicitly states so within
its individual program write-up. For all other programs, use of the
END P card is an error. If a program which uses the END P card
is also the last program to be executed it must be terminated by an
END P card then an END S card must appear to indicate that no more
cards follow.

CARD h

The last physical card in your deck must contain the characters /*

in columns 1 and 2. No other punches should appear on this card.

Sample SOUPAC deck setup:

//ID NAME=SMITH,DEPT=PEM,PS=6894,LINES=5000,CARDS=500,IOREQ=10000
// EXEC SOUPAC
//SYSIN DD *

program 1 ()()()()

program 2 ()()()()

program n ()()()()

END SOUPAC
DATA

END#
/*

-5-

Note that there may he more prog] ams than data decks or more data decks

than programs. In any case, for programs that read data decks, the user
must insure that the order of data decks corresponds to the order of
programs that read data decks since the first program to read a data deck
will read the first available deck, and so on. The process continues until
either the SOUPAC program list is exhausted or a program reading data cannot

find a data deck available. Notice that extra data decks are ignored.

A FINAL NOTE

Any changes the user may want to specify in the job control language
of SOUPAC must follow the standard OS/360 conventions.

-1A-

OPTIONS 10 A SOUPAC JOB:

PARMS, PROLOG CARDS, AND $-CONTROL CARDS

PARMS

Parms are arguments to the keyword 'Parameter,' contracted into
the keyword 'PARM' , which give instructions to a processor running under a

360-system. In this context, SOUPAC is a processor running under a 360
system. PARMS are always coded on an EXEC card and have the following form:

/ / EXEC SOUPAC ,PARM= ' 0PT1 ,0PT2

,

, OPTm

'

The permissable options to he used as SOUPAC PARMS are listed below with an

explanation of their use and function. Note that the default is underlined,
that is, // EXEC SOUPAC is equivalent to // EXEC SOUPAC ,PARM='0PT1,0PT2. .

.

where the underlined PARM is to be taken as one of the list of options in the
PARM string in the example. These PARMS give the SOUPAC system instructions
in the same way that parameters give SOUPAC statistical or data management
programs instructions.

1. NODYNAM or DYNAM

NODYNAM implies that a non-dynamic ally allocatable version of the
library of statistical procedures is to be used. This version will
run in some 150K of core and will handle a lesser number of
variables than the dynamically allocatable version. DYNAM will use
the dynamically allocatable version of any program requested which
will handle more variables in an arbitrarily specified amount of
core above a certain minimum. If using DYNAM, see the SOUPAC
consultants for a handout on optimal region sizes for particular
numbers of variables.

2. EXECUTE or NOEXECUTE

NOEXECUTE implies that the SOUPAC parameter deck, for which the
Syntax Interpreter is to scan and build intermediate parameters,
should not be executed. NOEXECUTE indicates that only a syntax
check is to be performed. If EXECUTE is specified and no errors
are found by the Syntax Interpreter, the job step will proceed.
If EXECUTE is specified and errors are found by the Syntax Inter-
preter, execution of the step may continue depending upon
whether LET or NOLET is also specified.

3. NOLET or LET

If an error is found by the Syntax Interpreter and EXECUTE has
been specified, execution will proceed only if LET was also
specified. In this case, execution will proceed only through the
last program processed which was completely error free. If NOLET
was specified and errors are found by the Syntax Interpreter,
execution will not be permitted.

h. LIST or NOLIST

LIST indicates that all program cards are to be listed. NOLIST
indicates that only the prolog section of the SOUPAC parameter

deck is to be listed.

-2k-

5- PGM or NOPGM

PGM indicates that a complete SOUPAC parameter deck and data decks
follow. NOPGM indicates that only the prolog section and data
deck follow, and that the intermediate parameters are being provided
by the user by over-riding the cataloged procedure. This implies
that the user has previously run a SOUPAC job and has saved the
two necessary data sets so that he may run the same program again.

To perform this saving of data sets correctly, a user should visit
the SOUPAC office first to ensure it is done correctly.

If any error is found by the Syntax Interpreter in the prolog section,
the job step will not continue.

If the job step which generated the intermediate parameter data
sets found syntax errors, execution of the job step in which
NOPGM is specified will continue (if EXECUTE is specified) through
the last program processed which was completely error free regard-
less of whether LET or NOLET was specified in either job step.

Examples

:

To do just a syntax check:

// EXEC SOUPAC ,PARM= ' NOEXECUTE

'

To execute up to the first program found to have syntax errors

:

/ / EXEC SOUPAC ,PARM= ' LET

'

To execute up to the first program found to have syntax errors and
use the dynamically allocatable library:

/ / EXEC SOUPAC ,PARM= ' LET ,DYNAM '

.

Note that the PARMS may be listed in any order.

B. PROLOG OF A SOUPAC JOB

Described below are several # control cards which may appear in the
prolog of a SOUPAC job. Within the prolog these control cards may
appear in any order. If prolog control cards are used, they must appear
immediately after the SYSIN card. The Syntax Interpreter determines
the end of the prolog when it reads a card which is not one of these
types. All types have parameters and must be terminated by a period .

Prolog cards may not have continuation cards , hence all parameter
information must be punched within 80 columns. There is no limit
to the number of prolog cards permitted nor is there any restriction on
the number of any one type. If conflicting information is entered, the
information entered last overrides any previous definitions.

1. ^REPEAT OPTION

The #REPEAT OPTION is used to repeat sections of a SOUPAC

parameter deck an optional number of times. The #REPEAT card

-3A-

which appears in the prolog section will be followed by up to

22 (twenty-two) integer parameters which will indicate the number

of repetitions of up to 22 repeat sequences. The card sequences to

be repeated will be preceded and followed by #SREP and #EREP

cards respectively. Example:

/*ID

// EXEC SOUP
//SYSIN DD *

#REPEAT (2).

<additional program cards>
#SREP
CORRELATION (c)()(Sl).

SQUARE ROOT FACTOR ANALYSIS (Si) (P(F)) (20) (C)(P(F))

.

#EREP
END S

In this example the program sequence of CORRELATION and SQUARE ROOT

FACTOR ANALYSIS will be repeated twice. Four card input data
sets would be required for the repeated sections.

Repeat sequences which begin before a main program and end in

a subprogram or which begin in a subprogram and do not end in the

same subprogram are not allowed. Nested or overlapping repeat sequences

are not allowed. Also a #SREP card cannot be immediately followed

by a #EREP card and a single appearance in the deck of either card

will cause an error.

2. #V-UNIT OPTION

#V-UNIT allows the user to change input and output addresses

in the execution of one SOUPAC job. The form of a #V is as follows:

#Vn (m) (A
1) (AjJ.

where n is an integer 1 through 9» thus there can be at most 9

variable addresses, namely VI through V9; and m is a counter which
determines how many times a variable address may be used before it

assumes the next value in its list of possible values. Aj_ A^
are addresses which Vn assumes. These can be any valid address.

At the moment, however, forms like (Sl/P) will not work. Note that .

CARDS and PRINT are permitted.

Finally, the list of addresses is cyclic; that is, if, after
A^ has been used, Vn occurs again in the program, Vn will have the
value A]_ , and so on

.

/•ID
// EXEC SOUP
//SYSIN DD *

#V9(D(S1)(S2)(S3)(SU).
#V5(1)(S1)(S2)(S3)(SU).
#REPEAT (k).

MAT.

-UA-

(Example, Continued)

#SREP
MOV (C)(V9).
#EREP
HOR (V5)(V5)(V5)(V5)(S5'
END P

END S

This program segment reads k separate card decks, saving them in
temporary storage, and horizontally augments them into one data set.

The equivalent without the use of #REPEAT and #V would be as follows

/•ID

// EXEC SOUP
//SYSIN DD *

'

MAT.

M0V(C)(S1) •

M0V(C)(S2) •

M0V(C)(S3) •

MOV(C)(SU) •

H0H(B1)(S"2)(S3)(SU)(S5).
END P

END S

Note that the M0V(C)(V9). statement is expanded into four move statements
and V9 takes the values SI through SU . Similarly, V5 takes on the
values of SI through Sk.

3- # OLD OPTION

The #0LD option is used to define the number of rows in a
sequential data set created by a previously run SOUPAC job. The
number of rows is then entered into a table in the monitor. This
option should be used whenever the header record on the data set
is not known to have a correct value for the number of rows, and the
user does not want to execute a MATRIX MOVE to count the rows. To
use the option, punch a card with #OLD in the first four columns.
Then code the address and the number of rows in the usual SOUPAC
fashion. The number of columns may be coded on the card if desired,
but will be totally ignored. Include this card in the prolog section
of the SOUPAC job.

For example, to indicate that a data set to be input from
SEQUENTIAL 1 has 77 rows you would prepare the following card:

#OLD (Sl)(77)-

-5A-

k. #TEST OPTION

There is also available a #TEST option; however, this facility-

is complicated and intended for testing purposes within the SOUPAC

office and has no significant advantage for the general user.

5. #DEFINE OPTION

Whenever the user wishes to specify the dimensions of a direct access

data set (DISK address), punch #DEFINE in the first seven columns of

a card followed by the address, number of rows and number of columns

coded in the usual SOUPAC fashion. Include this card in the prolog
section of your program. For double precision matrices, code the same

number of rows, but twice as many columns as otherwise. DISK 1 and DISK 2

have default definitions of 1+50 rows by k^O columns single precision.

If the user desires any other dimensions on these data sets , #DEFINE must

be used. If the user desires to use any DISK address other than DISK 1

and DISK 2, #DEFINE must be used besides supplying the necessary DD

cards

.

For example, to define a data set for DISK 17 with 20 rows and Ho

columns double precision, you would prepare the following card:

#DEFINE (DISK 17)(20)(8o).

Notice that all prolog cards start with a # in column one and must occur
before any SOUPAC program parameter cards. A #-card in the middle of

the SOUPAC program parameter deck is treated as a comment. There is,

however, a #-control card, while not strictly a prolog card, which may
occur in the SOUPAC program parameter deck and will not be treated as

a comment. This is the #-zero card and is the only exception to the
statement about # cards being comments if in the middle of the deck.

The #-zero card is essentially a debugging tool to facilitate reading
of dumps if one is needed. It has no particular use for the user.

C. $-CONTROL CARDS

$-C0NTR0L CARDS are used to provide additional information
to a SOUPAC program above and beyond what is included in the parameters.

There are 3 $-control cards. All must begin in column one with the character

$ and then continue accross the card without blank columns.

1. $C-B

The $C-B card provides as its arguments the variables to

be used as control breaks for a program which accept control
breaks. The use of this card with a program which does

not accept control breaks is an error. The form of this card
is as follows:
$C-B(V1)(V2) (Vn).

When V-j_ through Vn are variable numbers and n must be less than or

equal to 2k.

-6a-

2. $INP

$INP has as its arguments a string of input addresses.

The form is:

$INP(A1) (A).

where A-[_ through An are input addresses including cards.

The number of addresses will be determined by the program
accepting the $INP card and will explicitly mentioned in the

program write-up.

3 • $OUT
$OUT(A

n) (A).
I 1 n
$OUT has as its arguments a string of output addresses. The

form is the same as that for $INP and the number of addresses
is also determined by the program accepting the $OUT card.

Multiple output address will be accepted. See section on

Input/Output multiple addresses.

-1B-

SOUPAC INPUT-OUTFJT AND TEMPORARY STORAGE

I. GENERAL

A. Input and Output as Data Types

Consider a set of data which a researcher wants intercorrelated.

To do correlations there is in the SOUPAC library of statistical precedures

a correlation program. Input to the correlation program is the researcher's

raw data; output from the correlation program is a matrix of correlation
coefficients. Similarly, every conceivable program has a particular input;

in fact, perhaps several inputs, and some output.

The nature of the input and output of a particular program will

depend on the program and its intent. For example, raw data variables
are input into a correlation program which outputs a correlation matrix.

But a factor analysis program expects as input a correlation matrix,
and yields as output a factor matrix. In contrast to the singular
relation of the nature of input and output to a particular statistical
program, every program finds its input somewhere and must put its output

somewhere

.

B. Input and Output as Data Sources

SOUPAC is designed in such a manner that the researcher can tell
any program where his inputs are and where to put his outputs. Punched cards

are an obvious input source ; printed pages are an obvious output source

.

But the nature of a punched card deck input into a correlation program would
be that of raw data variables. In the SOUPAC system input and output sources

are also called addresses. Thus, a possible input address for a correlation
program is cards and a possible output address for correlation coefficients
is print. Input and output addresses are parameters to every program in

the SOUPAC system. As the researcher reads a particular program write-up
he will notice that the order of the parameters determines the nature of

his input or output and his supplying an input or output address determines
whether or not he uses or gets the particular inputs and outputs.

II. ELEMENTARY INPUT/OUTPUT ADDRESS AND TEMPORARY STORAGE

A. Possible elementary input and output addresses in the SOUPAC
system are these:

INPUT: CARDS, SEQUENTIAL 1, SEQUENTIAL 2, . . .

. . . SEQUENTIAL 15

OUTPUT: PRINT, SEQUENTIAL 1, SEQUENTIAL 2
. .SEQUENTIAL 15 (See section on ipunched cards

)

Again, CARDS and PRINT are obvious sources. SEQUENTIAL 1 through
SEQUENTIAL 15, however, are input or output names of 15 temporary storage
regions available to the researcher in the SOUPAC system. These 15
temporary storage regions are provided for exactly that purpose, temporary
storage of data. Notice that with this facility a user can save his

-2B-

correlation matrix, for example, at SEQUENTIAL 1 and then give SEQUENTIAL
1 as an input address to a factor analysis program. Or a researcher can
construct a copy of his data on temporary storage and then let any number
of programs use the same data as input from the same input address, saving
him the effort of making multiple copies of his card deck so that each
program would read its own deck. Finally, temporary storage addresses
enable the saving of intermediate results for further processing or
modification by other programs and thereby enable the researcher to
construct his own analysis procedure by providing the appropriate inputs
and outputs to the right programs at the right times.

B. SOUP vs SOUPAC with Respect to Temporary Storage

There are two ways of invoking the SOUPAC system. One can ask

for SOUPAC or SOUP. Note that all 15 temporary storage regions are allocated

to SOUPAC, while only SEQUENTIAL 1 through SEQUENTIAL 5 are allocated to

SOUP. Asking for SEQUENTIAL 6 through SEQUENTIAL 15 vhen running under

SOUP will cause an error and terminate the job.

All of these input-output addresses may be abbreviated as follows

:

CARDS C

PRINT P

SEQUENTIAL 1 SI (or Tl)

SEQUENTIAL 15 SI 5 (or T15)

Tl through T15 are alternative abbreviations for SEQUENTIAL 1 through

SEQUENTIAL 15- Tl through T15 are, in fact, abbreviations of TAPE 1

through TAPE 15- SEQUENTIAL 1 through SEQUENTIAL 15 and their abbreviations

are the recommended uses. The Tl through T15 notation reflects a real

technical distinction but has been kept to enable programs using that notation

to run.

C. Multiple Output Addresses

A researcher may want to output to several sources : he may desire
to both print and save some results for later use. He cannot, however,
input from more than one source for a particular input address. The facility
of multiple output addresses has the following construction:

(output addressl/output address^/output address3).

This is the completely general form providing for up to three separate
outputs. Each output must be a different source, however. Thus, (Sl/P/X)
is a valid multiple output address providing for temporary storage at SI,

-3B-

a print of the same data, and a j unched copy of the data. (See section on

punch for explanation of X). (Sl/P) will print and store but not punch.
The order of the addresses makes no difference. (Sl/P) is equivalent to
(P/Sl). Forms such as (S1/S2), however, are not permitted, nor are (P/P)

or (X/X): one can output only to one sequential and only once to P or X.

The above general form is available only if the output address in
the particular program is marked with an Q.

In all cases, however, the form

(output address l/output address 2)

is valid unless the program write-up explicitly has a restriction.

D. Print is F Form of Output Print Address.

There is yet another form to output addresses. This form is

available only where the researcher finds the symbol Q in the program write-
up and has to do with the kind of printed output. For technical reasons,
most programs print in a form called E-format which is a form of
scientific notation. This form allows the computer to print numbers of
any size. Some programs, for which the output numbers are known to be

constrained, as in correlation coefficients, however, print in a form
called F-format which is ordinary decimal number representation. F-format
generally cannot print numbers larger than a pre-determined size. The
size of number depends on the nature of a researcher's data, but the program
has no way of knowing this, hence, the most general form, E-format is used.

The researcher however, can on option specify F-format. To print in

F-format he would use the following output address:

(P(F)) or (P(F)/S1) if he wanted a multiple

output address. Those programs which print in F-format already, as for

correlation coefficients, can be made to print in E-format by using the
following output address:

(P(E)) or (P(E)/S15).

The different forms look like this:

E-format Scientific Notation F-format Decimal Number
Representation

+ 0.123 1+5E 06 +1.23^5 x 105 + 123^56. 123^5 +123U56.123U5

All four numbers have the same value correct to 5 places. Notice that F-format
cannot represent a number greater than 999999-99999 in absolute value
whereas E-format can represent the first 5 digits of any number of order of
magnitude up to 1099 . The numbers of digits illustrated for E and F

formats are the pre-determined limits for the size of numbers. E-format is

the more general form but F-format is easier to read.

-2B-

correlation matrix, for example, at SEQUENTIAL 1 and then give SEQUENTIAL
1 as an input address to a factor analysis program. Or a researcher can
construct a copy of his data on temporary storage and then let any number
of programs use the same data as input from the same input address, saving
him the effort of making multiple copies of his card deck so that each
program would read its own deck. Finally, temporary storage addresses
enable the saving of intermediate results for further processing or
modification by other programs and thereby enable the researcher to
construct his own analysis procedure by providing the appropriate inputs
and outputs to the right programs at the right times.

B. SOUP vs SOUPAC with Respect to Temporary Storage

There are two ways of invoking the SOUPAC system. One can ask

for SOUPAC or SOUP. Note that all 15 temporary storage regions are allocated

to SOUPAC, while only SEQUENTIAL 1 through SEQUENTIAL 5 are allocated to

SOUP. Asking for SEQUENTIAL 6 through SEQUENTIAL 15 when running under

SOUP will cause an error and terminate the job.

All of these input-output addresses may be abbreviated as follows:

CARDS C

PRINT P

SEQUENTIAL 1 SI (or Tl

SEQUENTIAL 15 S15 (or T15

)

Tl through T15 are alternative abbreviations for SEQUENTIAL 1 through

SEQUENTIAL 15- Tl through T15 are, in fact, abbreviations of TAPE 1

through TAPE 15. SEQUENTIAL 1 through SEQUENTIAL 15 and their abbreviations

are the recommended uses. The Tl through T15 notation reflects a real

technical distinction but has been kept to enable programs using that notation

to run.

C. Multiple Output Addresses

A researcher may want to output to several sources: he may desire
to both print and save some results for later use. He cannot, however,
input from more than one source for a particular input address. The facility
of multiple output addresses has the following construction:

(output addressl/output address^/output address^).

This is the completely general form providing for up to three separate
outputs. Each output must be a different source, however. Thus, (Sl/P/X)
is a valid multiple output address providing for temporary storage at SI,

-3B-

a print of the same data, and a j unched copy of the data. (See section on

punch for explanation of X). (Sl/P) will print and store but not punch.

The order of the addresses makes no difference. (Sl/P) is equivalent to

(P/Sl). Forms such as (S1/S2), however, are not permitted, nor are (P/P)

or (X/X): one can output only to one sequential and only once to P or X.

The above general form is available only if the output address in
the particular program is marked with an tt.

In all cases, however, the form

(output address l/output address 2)

is valid unless the program write-up explicitly has a restriction.

D. Print is F Form of Output Print Address.

There is yet another form to output addresses. This form is

available only where the researcher finds the symbol fl in the program write-

up and has to do with the kind of printed output. For technical reasons,

most programs print in a form called E-format which is a form of

scientific notation. This form allows the computer to print numbers of
any size. Some programs, for which the output numbers are known to be

constrained, as in correlation coefficients, however, print in a form

called F-format which is ordinary decimal number representation. F-format
generally cannot print numbers larger than a pre-determined size. The
size of number depends on the nature of a researcher's data, but the program
has no way of knowing this, hence, the most general form, E-format is used.

The researcher however, can on option specify F-format. To print in

F-format he would use the following output address:

(P(F)) or (P(F)/S1) if he wanted a multiple

output address. Those programs which print in F-format already, as for

correlation coefficients, can be made to print in E-format by using the
following output address:

(P(E)) or (P(E)/S15).

The different forms look like this:

E-format Scientific Notation F-format Decimal Number
Representation

+ 0.123 i+5E 06 +1.23^5x105 + 123^56. 123^5 +123^56. 123^5

All four numbers have the same value correct to 5 places. Notice that F-format
cannot represent a number greater than 999999-99999 in absolute value
whereas E-format can represent the first 5 digits of any number of order of

magnitude up to 1099 . The numbers of digits illustrated for E and F

formats are the pre-determined limits for the size of numbers. E-format is

the more general form but F-format is easier to read.

4b-

In this example of E-fomiat the E 02 part is to be understood as
10 . E 03 would be 103 and E-OU would be 10"^. Thus, .376 E 03 is

.376 x 103 or 376. while . 129^-01 is .129U x 10"1 or .0129 1+. The sign
following the E determines which way to move the decimal point; left for
negative, right for blank or positive. The number following the sign or
blank determines how many places to move the decimal point.

E. Punched Output (Don't forget to specify CARDS= on ID Card!)

All programs which have output addresses marked with the symbol
Q can punch output directly by using the X output address. X is the
abbreviation for cards as output. C used as an abbreviation for an output
address will be an error. Punched output generated by the use of the
X output address will be in E- format. (See section above). X(F) is not
a valid form and will be an error.

If punched output is desired in a form other than E-format or
from a program which does not allow the X output address, then the
researcher must make a copy of his data on temporary storage and go to
the MATRIX program and use the PUNCH instruction provided in that
program.

F. Obtaining Additional Input/Output Sources

It happens that 15 temporary storage locations may not be
enough. Additional temporary storage may be obtained by calling
for Sl6 through S40 . Use of Sl6 through S*t0 requires the addition of Job
Control Cards to the 360 system cards of the SOUPAC program deck. At
least the first time the researcher should check with S0UPAC consultants
before doing this; firstly to learn to do it correctly if he doesn't know how
already, and secondly, if he knows how, to make sure none of the Job Control
Language has been changed or modified, which can happen due to 360 system
changes or reconfigurations, or S0UPAC system changes, which may not be
announced in contrast to SOUPAC program changes which would have been
announced.

If in special instances even Uo temporary storage regions are not
sufficient or a situation arises where so-called DISK temporary storage is

required, there can be made available temporary storage regions called
DISK1 through DISK^O. Check with the SOUPAC consultants before using
these for the proper Job Control Cards and the proper SOUPAC prolog cards.

G. Using Owner Data Sources or Special Input/Output Requirements
in the SOUPAC system

Users' own tapes or disk packs can be used with the SOUPAC
system for input or output. See Appendix A for additional information.

-SB-

Special input/output requirements can usually be handled in the
SOUPAC system provided the requirements can be handled by the 360 system
at all. In such cases check with the SOUPAC consultants.

General problem types of the nature alluded to above would be
multiple file volumes, blocked input/output, formatted or unformatted
input/output, different kinds of record lengths and different forms of data
representation due to machine differences or differences in facilities
at other computer installations.

February, 1971

Using Owner Storage Devices With SOUPAC

Introduction

User data storage mediums for our 360 user will typically be dismountable

tape or disk packs or they will be user data sets on some dismountable or

permanently mounted disk pack. Whatever the source, it must be described fully

so that the machine can access it. This information is needed as arguments

to certain JCL keywords. These parameters will be treated in a moment. First

we want to consider the dismountable devices, tapes and disk packs. User disk

packs are not as frequent as user tapes so we shall ignore them for the moment.

There are several "physical" characteristics of tapes which pertain to recording

techniques which must be considered before we get inot the "logical" attributes

described by the JCL parameters in the next section.

Physical tape parameters are density, number of tracks written and recording

mode. Density can be 200, 556, 800, or 1600 bits per inch, abbreviated BPI. Thus

a tape written at 800 BPI can store less information per inch than one written at

1600 BPI. Note that a tape to be used on the 360 must be written at 1600 BPI. It

is true that we have a dual density tape drive, namely 800/1600 BPI accessible to

the 360 and that there is a density parameter in JCL enabling one to specify the

density but since the 1600 mode is so much faster, generally, to be used on the 360,

the tape should be at 1600 BPI.

The number of tracks used in recording is 7 or 9- The 360 usually uses a 9

track recording mode; the 709^ used the 7 track mode. Recording mode is unformatted

or formatted but we usually speak of binary tapes or card image tapes, respectively.

If it is a card image tape it is BCD or EBCDIC.

Thus, the most desirable input tape for the 360 is 1600 BPI, 9 track, 360 binary

or EBCDIC. If one or more of these characteristics is different, then it should be

changed by doing a tape to tape copy with the appropriate conversion. Asking for

-2-

special exceptions is not advised; i.e. do not try getting permission to write

800 BPI except in very special circumstances.

At this installation we can do the following conversions:

556 BPI to 800 BPI to 1600 BPI and vice versa
7 track to 9 track and vice versa
BCD to EBCDIC and vice versa

Note that in going from EBCDIC to BCD some characters may be lost. These conver-

sions are at the moment done by the 360/50 by requesting a tape to tape copy for

which the above operations are requested.

We can also do 3o0 binary to EBCDIC conversion and vice versa but we do not

have the facility to do anything about a 709*+ binary tape. Not that it cannot be

done, but of the two alternative means we know of, one uses IBM conversion routines

which would require hardware changes; the other requires a non-trivial program

which we do not have and even when we get it, it will be slow and clumsy.

We repeat that there are JCL keywords to specify density, number of tracks,

and parity but it is too slow and clumsy for the 360/75

•

Clearly the greater the density, the more information can be stored on a tape

and the faster it can be read or written. The higher density does however also

require a better tape. One should not write 1600 BPI on a tape tested at 800 BPI.

Further only a 1600 BPI tested tape can be reliably written with 9 tracks. This

test BPI information is usually on the tape reel in the form of a comment saying

tested at 1600 BPI or 800 BPI. Note that 1600 BPI and 3200 FCI mean the same thing.

There are several things to keep in mind when writing a user tape in binary

or card image mode. Card image, line image, and formatted tape all mean essentially

the same and mean exactly what their names imply. Clearly all these are read and

written with a format. Binary and unformatted tapes read and write faster than

formatted tapes but may take up more space than formatted tapes. How much data

a user wants always accessible and how important time is will probably determine

what mode to use. A card image tape may be read many different ways using formats

-3-

to pick off variables. An unformatted tape has variables immediately usable but

perhaps not everything the user has on his cards. He can put everything he may

ever want to use on his unformatted tape but he may also be dragging some super-

fluous variables around everytime he does a read.

Choice, though possible, is typically not available for number of tracks on

tapes written by the 360. You get 9 track tapes.

So, the usual 360 output tape is 1600 BPI, 9 track, formatted or unformatted.

SOUPAC writes 1600 BPI, 9 track, unformatted tapes. To get a 1600 BPI, 9 track,

formatted tape out of SOUPAC the easiest thing to do at the moment is to over-ride

the punch statement in the proc, i.e., FT07F001. To input a formatted tape to

SOUPAC, over-ride the procedure in an appropriate way and use the MATRIX INPUT

instruction. To input a SOUPAC written unformatted tape just over-ride the pro-

cedure .

Over-riding the SOUPAC procedure for using user data storage devices

SETUP or not SETUP

Users data exists on permanently mounted volumes such as UIDCS1 or on dismount-

able volumes such as UIUSRU or DK0013 or user tapes or disk packs. In this context,

a volume is that physical disk pack or tape which gets mounted onto a disk drive

or tape dirve. If a volume is permanently mounted you need do nothing at this setup

stage. If it is dismountable, you need a /^SETUP card for each such volumne among

your /* cards, if any, after the /*TD card. Tapes always require a /^SETUP card.

For data sets on disk packs, determine from the user whether it is dismountable or

not. The form of a /*SETUP card is as follows:

/*SETUP_UNIT=type, ID=name

, ID=(name, label)

.

Type is DISK or TAPE: the choice is obvious.

For tapes, name under ID will be 0XXXXX for an owner tape where XXXXX is some

tape sequence number or PXXXXX or LXXXXX where P and L are pool and lease tapes

-k-

rented from DCS.

A tape may be internally labeled or not. If it is not labeled the label

argument is NL, meaning no label. If it is labelled the argument will be SL,

meaning standard label. If it is standard labelled, later in the over-ride of

the proc you will need to know the DSNAME.

If no label argument is used for tapes the default is SL. For dismountable

disk packs at DCS, the volume name is all that is needed since they are all

internally standard labelled. You must find out from a user if his tape or non-

DCS disk pack is internally labelled or not.

Over-riding the SOUPAC proc

Assuming you now have the user volume mounted, you must still tell SOUPAC

about it. Suppose that the user volume is a sequential data set (or possibly

more than one sequential data set). Usually they will be. Direct access data

sets will be discussed later. You must assign it a SOUPAC sequential data set

reference number. Numbers 11 through k9 are available and correspond to the

SOUPAC addresses SI through S39 (or Tl through T39) . Which data set reference

number you use does not make any difference. For sake of example let us choose

SI and over-ride FT11F001 in the SOUPAC proc. Our JCL should look like this to

this point

:

/*ID
/*SETUP UNIT=type,ID= (name, label)

// EXEC SOUPAC
//FT11F001 DD indication string
//SYSIN DD *

The indication string has some or all of the parameters listed below. Use all

except those where an option is mentioned.

UNIT=type type is the same as that on the SETUP card;
if no setup then it is DISK

-5-

VOL=SER=name namp is the same as that on the SETUP card;

if no setup, it is the name of a permanently
mounted volume

LABEL=NL
LABEL=SL

DISP=

DSNAME=

same as label argument if used on SETUP card;

if not used on SETUP card, can be omitted

arguments are NEW, OLD, KEEP, DELETE, CATALG,

UNCATALG, PASS singly or in combination de-

pending on what you are doing

some name; use if you have a standard labelled

tape; otherwise optional depending on what you

are doing

SPACE (kind, (primary, secondary)

)

kind=TRK
CYL

primary

secondary

DCB=arg l=arg 2

DCB=(argl, arg 2 , arg 3)

not necessary for an OLD,

PASS, or CATALG data set;

necessary for a NEW data
set; not necessary for a

NEW user tape data set

a TEK holds 7200 bytes
a CYL has 20 tracks
there are other kind parameters, but you probably
should not be using them

number of kinds of space units you initially
request; you get this space at once; if it is

not possible to allocate you get a space un-

available message

if you run off the end of your primary allocation

you get 15 extends of the number you specify as

secondary of the space units you specify as kind

if the machine cannot give you 15 extents or

if after 15 extents you still need space you
get a space unavailable message

optional depending on what you are doing

DCB arguments are as follows

:

RECFM= F fixed record format (used for formatted I/O
1

)

V varying record format (usually used for
unformatted i/O)

U undefined record format (used for formatted
or unformatted I/O)

B blocked record format
A alphameric record format; usually just on SYSOUT

these may be used in combination as in RECFM=FB. Note if B is used
you must also use LRECL and BLKSIZE.

LBFCL=n n is the logical record length in bytes

BLKSIZE=m m is the blocksize in bytes

-6-

If no DCB is specified you get the OS default DCB. You may not necessarily

want this. Ascertain from the user what DCB he has and use it. For more in-

formation on DCB's check your FORTRAN users guide. But, we mention several pit-

falls already encountered and several points of information. SOUPAC by default

uses

:

dcb=(recfm=v,lrecl=796,blksize=8oo^

If you write a formatted data set with DISP=PASS you get RECFM=F whether you

specify it or not and SOUPAC, unless you specify DCB, will kick you off with the

message that it has an F or U RECFM but expecting V. If you had a tape written

with format conversion in another job and did not specify DCB=RECFM=F you will

probably get an illegal decimal character message. If you give SOUPAC a data

set with DCB=RECFM=F some way or another, SOUPAC will be unable to write on it

since it writes unformatted unless you use the MATRIX PUNCH instruction and over-

ride FT07F001. If you over-ride FT07F001 remember you get a SOUPAC DATA card

image and an END# card image. If you write large formatted strings or many vari-

ables, you should check on default LRECL and BLKSIZE. If your record is larger

than LRECL, you just spill onto the next logical record and the machine will worry

about it. If your record is larger than BLKSIZE, you get at best that piece of

the record that fits into BLKSIZE and the rest is lost. There are several tricky

things that are going on here, but usually you need not worry about them. If

your record is shorter than LRECL, then most of LRECL is unused and you may be

wasting space. This becomes important when you start getting space unavailable

or end of volume messages. Furthermore it is inefficient, though it is often much

more convenient just to take the defaults. Again, consult your FORTRAN user's

guide for more details.

EXAMPLES

Write onto a users tape a SOUPAC data set in binary

/*ID
/*SETUP UNIT=TAPE,ID=(0XXXXX,NL)

// EXEC SOUPAC
//FT12F001 DD UNIT=TAPE,VOL=SER=0'XXXXX,LABEL=I«J,DISP= (NEW, KEEP)

//SYSIN DD *

TRANSFORMATIONS (IA) (T2) (13)

Write onto a users tape a SOUPAC data set in EBCDIC

/*ID
/*SETUP UNIT=TAPE,ID=(0XXXXX,NL)

// EXEC SOUPAC
//FT07F001 DD UNIT=TAFE,VOL=SER=0XXXXX,LABEL=NL,DISP=(NEW, KEEP)

//SYSIN DD *

MATRIX.
PUNCH (IA)" (format)"

note that you will get the SYSPUNCH default DCB which limits you to card images,

i.e., 80 bytes per record. For larger records use your own DCB.

Read a users formatted tape into SOUPAC

/*ID
/*SETUP UNIT=TAPE,ID=0XXXXX,SL^

// EXEC SOUPAC
//FTU9F001 DD UNIT=TAPE,VOL=SER=0XXXXX,LABEL=SL,DISP= (OLD, KEEP),

DSN=USER . PYXYY . TPDATA, DCB= (RECFM=F, LRECL=80, BLKSIZE=800)
//SYSIN DD *

MATRIX

.

INPUT(T39^ (Tl) (NCOL^ " (format
)

"

note that you are reading a card image tape with 10 card images per physical
record, i.e., blocking factor of 10 to 1.

Read a users unformatted tape into SOUPAC written by SOUPAC

/*ID
/*SETUP UNIT=TAPE, ID=(0XXXXX, NL^

// EXEC SOUPAC
//FT13F001 DD UNIT=TAPE,VOL=SER=0XXXXX,DISP=(OLD,KEEP),LABLE=NL
//SYSIN DD *

COR(T3)(P)(P).

note this presupposes that SOUPAC wrote the tape originally

Read a users unformatted tape into SOUPAC not written by SOUPAC

/*ID
/*SETUP UNIT=TAPE,ID=(0XXXXX,NL)

// EXEC SOUPAC
//FT11F001 DD IMIT=TAPE,VOL=SER=0XXXXX,DISP= (OLD, KEEP), LABEL=NL,

DCB= (RECFM=V, LRECL=U00, BLKSIZE=i+Oi+)

//SYSIN DD *

#0LD(T1) (nrow
,

i (NCOL) .

MATRIX

.

MOVE(Tl) (T2^

.

note first of all you need the #OLD card to simulate a SOUPAC header record.

Further each record must contain three extra integer *h words at the front of

the record to correspond to SOUPAC records. Also, if it was written with default

DCB you do not need to specify a DCB. Finally, the #OLD card is good to use if

you are having header record problems in SOUPAC anyway.

Read a user data set from a dismountable disk

/*ID
/*SETUP UNIT=DISK, ID=DK0291

// EXEC SOUPAC
//FT12F001 DD UNIT=DISK,V0L=SER=DK0291,DSN=USER.PXXX.name,

DISP=(OLD,KEEP\DCB=(RECFM= ,LRECL= ,BLKSIZE=)

//SYSIN DD *

use input if formatted; otherwise go through the appropriate sequence for un-

formatted reads. To write the data set, use the SPACE parameter; change the

DTSP parameter appropriately; and consider what kind of write you want and fix

the over-ride appropriately.

If you intend to generate data in SOUPAC and wish to use the data in any context

other than SOUPAC, it is highly recommended that you do not simply save the binary

image file but generate a formatted record data set. Formatted record data sets

interface more completely with other systems.

CORRECTION TO HANDOUT ON USING OWNER STORAGE DEVICES WITH SOUPAC

On page 5 the statements:

LABEL=NL
LABEL=SL

should read

LABEL=(,NL)
LABEL=(,SL)

therefore also in the examples every statement which has in it an occurance of
the phrase LABEL=NL or LABEL=SL should have that phrase changed to LABEI>(,NL)
or LABEL=(,SL), respectively.

For your information

:

LABEL=(,NL
,

l or LABEL=(,SL) is equivalent to LABEL=(l,NL) or LABEL=(l,SL)
which in fact means file 1 on the volumne. Thus to access file 2 you would
write LABEL=(2,NL) or LABEL=(2, SL"! , or in general, LABEL=(n,XX) where n is
the file number and XX is NL or SL.

10/27/69

CROSS REFERENCE

Statistical Technique
or Estimate

Alpha factor analysis

Analysis of Variance

Analysis of Covariance

Autocorrelations

Beta Coefficients

Biserial Correlations

Canonical Correlations

Canonical Factor Analysis

Centroid Factors

Chi-Square

Clique analysis

Communality estimation

Correlations

Covariance, Analysis of (See

Analysis of Covariance)

Covariance Matrix

Covariance Matrix of Coefficients

Covariance Matrix of reduced
form residuals

Cross-products matrix

Cross-Tabulation

SOUPAC Source

ITERATIVE

BALANOVA, T-TEST

T-TEST, UMAVAC*

AUTOCORRELATIONS

CANONICAL, CORRELATIONS, MULTIPLE,
STEP-WISE

BISERIAL

CANONICAL

ITERATIVE

CENTROID

CANONICAL, CHI-SQUARE, FREQUENCY, PROBIT

CLIQUE

COMMUNALITIES

AUTOCORRELATIONS, BISERIAL, CANONICAL
CORRELATIONS, DISCRIMINANT, MISSING,
MULTIPLE, OBLIMAX, PARTIAL, STEP-WISE

CORRELATION, K-CLASS , MULTIPLE, STEP-WISE

K-CLASS

ECONOMETRIC

CORRELATIONS, DISCRIMINANT, K-CLASS,
MULTIPLE

FREQUENCY

* See SOUPAC Consultants about using UMAVAC.

Statistical Technique
or Estimate

Data Processing

Determination of a matrix

Determination, Coefficient of

Deviation covariance matrix

Deviation (partial) correlation
matrix

Diagonal Method Factor Analysis

Dichotomous data

Discriminant Function

Discriminant Scores

Dispersion Matrix

Distribution Analysis

Durbin-Watson Coefficients

Dwyer Extension analysis

Eigenvalues

Eigenvectors

F-Ratios

Factor Analysis

Factor Scores (See Factor Analysis)

Frequency Distributions

Gamma Coefficients

Goodman and Kruskal Coefficients

Iterative Principal Axis Solution

K-Class Estimation

Kolmogorov-Smirnov Statistic

SOUPAC Source

MATRIX, STANDARD, TRANSFORMATIONS

MATRIX

MULTIPLE, STEPWISE, K-CLASS

MULTIPLE

MULTIPLE

SQUARE

BISERIAL, SCALOGRAM

DISCRIMINANT

DISCRIMINANT

DISCRIMINANT

FIT, FREQUENCY, KOLMOGOROV

ECONOMETRIC, MULTIPLE

PROCRUSTES

DISCRIMINANT, JACOBI , K-CLASS
PRINCIPAL AXIS, THREE-MODE

JACOBI, PRINCIPAL AXIS, THREE-MODE

BALANOVA, DISCRIMINANT, MULTIPLE,
STEP-WISE, T-TEST

COMMUNALITIES , ITERATIVE , OBLIMAX

,

UNRESTRICTED, VARIMAX, THREE-MODE

FREQUENCY

FREQUENCY

FREQUENCY

ITERATIVE

K-CLASS

KOLMOGOROV

Statistical Technique
or Estimate

Lambda Coefficients

Latin Squares

Least Squares Factor Fitting

Limited Information Estimation

Linear Programming

Means

Missing Data Correlations

Moving Averages

Multiple correlation

Noncard, non SOUPAC generated input

Oblique Factor Rotation

Orthogonal Factor Rotation

Orthogonal Simple Structure

Paired Comparisons

Partial Correlation Coefficients

Phi Coefficients

Point Biserial Correlations

Predicted Values

Primary Factor Pattern

Principal Components (See Factor
Analysis

)

Probit Analysis

Punched Card Output

Quadratic Programming

Random Number, Generation of

SOUPAC Source

CANONICAL, DISCRIMINANT, FREQUENCY

UMAVAC

PROCRUSTES

K-CLASS

LINEAR

CORRELATIONS, DISCRIMINANT K-CLASS,
MISSING, MULTIPLE, T-TEST, STANDARD

MISSING

STANDARD

CANONICAL, MULTIPLE, STEP-WISE

MATRIX (INPUT operation)

BINORMAMIN, OBLIMAX

VARIMAX

VARIMAX

PAIRED

PARTIAL

Use CORRELATIONS

CORRELATIONS

ECONOMETRIC, MULTIPLE

BINORMAMIN, OBLIMAX

PROBIT

MATRIX

QUADRATIC

RANDOM

Statistical Technique

or Estimate

Rank Order Correlations

Recoding Variables

Reduced Form Estimates

Reduced Form Predicted Values

Reduced Form Residuals

Reference Vector Structure

Regression Analysis

Regression Covariance

Residual Analysis

Rotation of Factors

Sample Size

Serial Correlations

Spearman ' s Rho

Spearman ' s C

Spectrum Analysis

Square Root Factors

Standard Deviations

Standard Errors of Regression

Coefficients

Standardized Data

Standardized Regression Coefficients

Stepwise Maximum Likelihood Factor

Analysis

Stepwise Multiple Regression

T-Statistic (Student's)

Tchuprow's T

SOUPAC Source

RANK

TRANSFORMATIONS

ECONOMETRIC

ECONOMETRIC

ECONOMETRIC

OBLIMAX, BINORMAMIN

CORRELATION, K-CLASS, MULTIPLE, STEP-WISE

MULTIPLE

ECONOMETRIC

BINORMAMIN, OBLIMAX VARIMAX

CORRELATION, DISCRIMINANT, FREQUENCY,

MISSING, MULTIPLE, STANDARD

AUTOCORRELATIONS

RANK

FREQUENCY

AUTOCORRELATIONS

SQUARE

CORRELATION, MULTIPLE, STANDARD, T-TEST

K-CLASS, MULTIPLE, STEP-WISE

STANDARD SCORES

CANONICAL, MULTIPLE, STEP-WISE

ITERATIVE

STEP-WISE

CORRELATION, MULTIPLE, STEP-WISE

T-TEST

FREQUENCY

Statistical Technique
or Estimate SOUPAC Source

Tetrachoric Correlations

Three Mode Factor Analysis

Three Stage Least Squares

Two Stage Least Squares

Unrestricted Maximum Likelihood
Factor Analysis

Variance (See Standard Deviations)

Variance, Analysis of (See Analysis
of Variance)

PARTIAL

THREE MODE

THREE STAGE

K-CLASS

UNRESTRICTED

DATA AND MATRIX MANIPULATIONS PACKAGE

The data manipulative programs

As implied by the name, TRANSFORMATIONS is used for performing

data transformations often necessary in "setting up" data to "be input

to one of the "cook-book" programs of the SOUPAC system. The user may

create new variables as linear combinations or as algebraic functions of

old variables, and the user may recode or alter data values on the basis

of test conditions by using the TRANSFORMATIONS program. To perform

matrix algebra operations with one or more matrices, to augment matrices either

row-wise or column-wise, to reorder, save or delete specific rows or

columns of a matrix, one would use the MATRIX program. MATRIX also has

the capability of printing, punching card decks, and reading and writing

tape and disk files in ways not available elsewhere in SOUPAC.

The TRANSFORMATIONS and MATRIX programs have a unique place in the

SOUPAC system. Although the remainder of the SOUPAC library performs

a large number of specialized statistical procedures, there are some

computations which are not represented by a uniquely written program.

However, by an imaginative utilization of the combined powers of

TRANSFORMATIONS and MATRIX it is possible to perform a virtually unlimited

range of established and experimental statistical techniques. It is a

common practice within the SOUPAC office to "check out" newly written

programs against results computed by TRANSFORMATIONS and MATRIX. Conversely,

these two programs can be used as teaching tools by having students learn

the step-by-step computations and then checking the results against results

of the "cook-book" programs. Complete multiple regressions and analysis

of variance programs, for example, have been written in this manner. Since

most SOUPAC jobs require the use of TRANSFORMATIONS and MATRIX, a

familiarity with these two programs is basic to an effective use of the

SOUPAC system.

MATRIX

I. General Description

The MATRIX program is a data manipulating program for inputting
and outputting, creating, performing matrix algebraic operations, and

generally handling data matrices. All the MATRIX suboperations are

restricted to ^50 columns (variables). No absolute limit is set on

the number of rows (observations).

Standard SOUPAC address conventions are used including the use of

the character X to denote punched output, and (f) after a print to

denote print with F format. Also available and discussed in section III

below is the use of I for storing a matrix in memory, and the use of (l)

after a print to invoke the MATRIX labeling feature. All other
restrictions are noted by the discussion of the individual suboperation
explanations.

II. Parameters

A. Main Parameters

To invoke the MATRIX program, code the name MATRIX (or simply
the program mnemonic MAT). There are two optional parameters
available which may be coded on the MAT card.

First, if it is desired to print, immediately prior to the
execution of each MATRIX subparameter operation, the time in

seconds since entry into the MATRIX program, code a (l) after the

name MATRIX. This option is not normally needed and is provided
merely for giving timing estimates.

The second optional parameter is coded as a (l) following the
timing estimate parameter. This second option causes the number
of rows and columns and the precision (either single or double) of
the answer matrix (for all suboperations which produce an answer
matrix) to be printed out. This is useful in debugging a MATRIX
program when it is not necessary to see the entire answer matrix to

be printed out, but it would be helpful to check the dimensions of
an answer matrix. As in all SOUPAC programs, the main program
parameter card must be terminated by a period. Examples:

MATRIX.

MATRIX (1).

MAT.

MAT (1)

.

MATRIX (l)(l).

MAT ()(l). -- recommended usage —

MATRIX
Page 2

B. Subparameters

Any MATRIX operation may be invoked by coding its mnemonic
followed by appropriate subparameters. All operations in MATRIX
handle both single and double precision matrices at the control
of the user (see operations SINGLE and DOUBLE). For an address

not explicitly assigned either single or double precision, MATRIX
assumes a default of double precision for output to the address.

Terminate all subparameter cards with a period.

To end a MATRIX program, place a card which has the characters
END P after the last MATRIX subparameter card. Since all MATRIX
programs must have at least one subparameter operation, an error
will be signaled if a MAT card is followed immediately by an

END P card.

Input and output for MATRIX may be from any source, however, the

following rules must be observed:

1) Never use CARDS as input to any operation except

MOVE unless both the number of rows and the number
of columns have been specified on the DATA format
card at the front of the data deck.

2) You may never output to PRINT only. All MATRIX output

must go to some intermediate storage location even when
only printout is desired.

3) Avoid using the same address more than once on the same

parameter card unless otherwise noted in the description
of an individual operation. However, in those operations

which do permit using an address more than once as an input

address, CARDS may not be used as an input address more than

once. In all operations except INVERT, never specify an

output address which is the same as an input address for

that operation.

k) The contents of an input address remains unchanged
during the execution of an operation unless otherwise
noted.

Following is a description of the subparameter operations currently
in the MATRIX program.

Summary of MATRIX Ojerations

MATRIX
Page 3

mnemonic notes operation name examples

ABS Absolute value ABS (SI] (S2).

ADD 1 2,5 Add ADD (SI' (S2) (S3).

ALL 3,6 All ALL (

ALL (

ALL (

SI'

SI'

SI

"GT" *0-* (S2).

"NE" *-0* (S2) (2).

"LE" (S2) (S3) (1,10,3)

ANY 3,6 Any ANY (

ANY 1

ANY 1

'SI

'SI

'si

"GE" (S2) (S3).

"EQ" *1.* (S2) (1,2) (5

"LT" *99* (S2).

CHO h Cholesky decomposition CHO 'si (S2).

COL 6 Column delete COL
COL

'si

;si

) (S2) (2).

) (S2) (10) (12,15).

CON Constant addition CON
CON

;si

[si

)
2. (S2).

) (S2) (S3).

cou Count COU
COU
COU

[si

;si

[si

) (S2).

) (S2) (1).

) (S2) (2).

DIA Diagonal to vector DIA [si) (S2).

DIM Dimension DIM [si) (S2).

DOU 2 Double precision DOU [si) •

EJE Eject EJE.

E-D 1, 2,5 Elementwise divide E-D [si) (S2) (S3).

E-M 1 2,5 Elementwise multiply E-M [si) (S2) (S3).

E-R Elementwise square root E-R [si) (S2).

EXP Expand EXP
EXP

[si

[si

)
20 (S2).

) (S2) (S3).

FIL 2 File FIL [si) •

GEN 6 Generate GEN [si)
1.

HOR 1. 2,5 Horizontal augment HOR [si) (S2) (S3).

IDE Identity matrix IDE [k8) (si).

INP Input INP
INP
INP

[si

[si

[si

) (S2) () (9) "(9F6.1)".

) (S2) () (12).

) (I) (576) (10).

INV h Invert INV
INV
INV

[si

[I)

[si

) (S2).

(I).

) (S2) (1) (1) *10.E-6*.

LAB 6 Label LAB [si) "SAMPLE 1" "AGE" "SEX".

LAG Lag LAG
LAG

[si

[si

) (2) (6) () (S2).

) (3) (10 (1) (S2).

LOW Lower triangle LOW
LOW

[si

[si

) (S2).

) (S2) (1).

MATRIX
Page h

mnemonic notes operation name examples

MAX Maximum value MAX (

MAX (

MAX (

'si

'SI

SI

) (S2).

) (S2) (1).

) (S2) (2).

MIN Minimum value MIN (

MIN (

MIN (

SI
SI
SI

) (S2).

) (S2) (1).

(S2) (2).

MOV 2 Move MOV (

MOV (

:c)

SI
(si).

(S2).

MUL 1A5 Multiply MUL ('SI > (S2) (S3).

OUT Output OUT (

OUT (

'si

'si

) (S2) "(10E16.9)".
) (S2).

PAR Partition PAR ('SI) (S2) (5) (10) (2) (21).

PER 6 Permutation PER (SI) (2) (1).

PRI Print PRI ('si)
"(' ',10F13.4)".

PUN Punch PUN ('SI) "(8F10.3)".

REC Reciprocal REC ('si) (S2).

REM Remap REM 'si) (S2) (8).

REW 2 Rewind REW ('si)

.

ROW 6 Row delete ROW (

ROW (

si
'si

) (S2) (1) (2) (3).

) (S2) (2,20,3) (3,20,3).

SCA Scalar multiply- SCA (

SCA (

'si

SI
) *.l* (S2).

) (S2) (S3).

SIN 2 Single precision SIN (SI)

.

SUB, 1,2,5 Subtract SUB (SI) (S2) (S3).

SUM Sum SUM (

SUM (

SUM (

SI
'si

SI

) (S2).

) (S2) (1).

(S2) (2).

TRA k Transpose TRA (SI (S2).

UPP Upper triangle UPP (

UPP (

SI
SI

(S2).

(S2) (1).

VEC Vector to diagonal VEC (SI (S2).

VER 1,2,5 Vertical augment VER (SI (S2) (S3).

1. Conformability of input matrices is checked.

2. Up to twenty-one total addresses may be used.

3. A warning message is printed if no rows are output.

k. Any matrix which has been previously stored under the I address will
be destroyed.

5- An input address may be used more than once for input to the same
instruction.

6. As many arguments as are needed of the last argument type may be used.

MATRIX
Page 5

ABSOLUTE VALUE (mnemonic: ABS)

The ABSOLUTE VALUE operation has two address parameters, an input
address and an output address. The absolute value of each element of
the input matrix is taken and the result goes to the output address.
Example

:

ABSOLUTE VALUE (SEQ3) (SEQJO

.

ADD (mnemonic: ADD)

The ADD operation has from three to twenty-one address parameters.

The last address is the output address; all other addresses are for

input. Each input matrix must have the same number of rows and columns

as all other input matrices. An address may be used more than once

as an input address.
Corresponding elements of the first matrix through the next to

last matrix are added together, and the result goes to the output

addre s s . Example s :

ADD (SEQ1)(SEQ,U)(SEQ5).

ADD (SEQl) (SEQJ+) (SEQ2) (SEQ3) (SEQ5)

.

ALL (mnemonic: ALL)

The ALL operation performs a particular test, specified by the

second operand as a relational operator, between a set of elements for

each input row and a floating point number specified by the third
operand. If all elements of the set for a given row pass the test,

that row is output to the output address.
The first parameter is the input address. The relational

operator is enclosed in quotation marks. The third operand may be

either a floating point number or an address in which case the

first element of the matrix is used as the floating point number.

The six legal relational operators are "LT", "LE", "EQ", "NE",

"GT", and "GE". Remaining (optional) parameters are index
sets specifying which variables are to be included in the testing.
If no variables are specified, all variables are included in the
testing. Note that if only one variable is specified, the results
of the ANY and the ALL operation would be the same. Examples:

ALL (SEQ1) "NE" *0.* (SEQ2)

.

ALL (SEQ3) "GE" (SEQ» (SEQl)

.

ANY (mnemonic: ANY)

The ANY operation performs a particular test, specified by the

second operand as a relational operator, between a set of elements for
each input row and a floating point number specified by the third
operand. If any element of the set for a given row passes the test,

that row is output to the output address.

MATRIX
Page 6

The first parameter is the input address. The relational

operator is enclosed in quotation marks. The third operand may be

either a floating point number or an address in which case the

first element of the matrix is used as the floating point number.

The six legal relational operators are "LT", "IE", "EQ", "HE", "GT",

and "GE". Remaining (optional) parameters are index sets specifying

which variables are to be included in the testing. If no variables

are specified, all variables are included in the testing. Note that

if only one variable is specified, the results of the ANY and the ALL

operation would be the same. Examples:

ANY (SEQ2) "GT" *3-* (SEQl).

ANY (SEQl) "NE" *-0.* (SEQ»(l,3).

CHOLESKY (mnemonic: CHO)

The CHOLESKY operation decomposes a square symmetric matrix into

the product of an upper triangular matrix and a lower triangular

matrix such that the two triangular matrices are the transpose of

each other. CHOLESKY has two operands, an input address and an

output address. The result which goes to the output address is

the lower triangular matrix resulting from the decomposition.

If the input matrix is not square, the "extra" rows or columns

are ignored. Additionally, if the square matrix is not symmetric,

the actual upper triangle of the matrix is effectively ignored

and is instead assumed to be identical to the lower tirangle.

Example

:

CHOLESKY (SEQl)(SEQ2).

If the input matrix on SEQ 1 is

h -2 -k

-2 2 3

-h 3 6

the resulting matrix output to SEQ 2 is

2-110
-2 11

COLUMN DELETE (mnemonic: COL)

The COLUMN DELETE operation specifies which columns of an input

matrix are to be deleted before sending the result to the output

address. The first parameter is the input address. The second

parameter is the output address. Columns to be deleted are

specified by index sets following the output address. Examples:

COLUMN DELETE (SEQU) (SEQ5) (k) (5) (6) (8) (13) (15)

•

COLUMN DELETE (SEQl) (SEQ2) (l,30,3^

•

MATRIX
Page 7

CONSTANT (mnemonic: CON)

The CONSTANT operation has three parameters A rwir.number specified hv +h& o^™^ ^^^rs. a Iloatmg point
the matrL specified by th ftTT ^ added t0 eTery el«»«t <*
the third opened addresj *

"""""^ ^ reSiat «°" *°

CONSTANT (SEQ1) *4. 5* (SEQ2).
CONSTANT (SEQl)(SEQ3)(SEQif).

COUNT (mnemonic: COU)

^i:°z ropts iSiSw
operands; an in^ add— - - -t^

visaing data, of^acn l^of^,5£?Lg£^
f?,d?Ul,«

option is equivalent to specifying option S!
SpeClf>lne no

coial^oA L™ad

counl o

r

rSe
tlng^ ""** " a Sl^

basing data of each r^oflS Sput^! °f^^ «*•"•«

Examples:
e±ementS

'
exclu^g missing data over the entire matrix.

COUNT (SEQ1) (SEQU)

.

COUNT (SEQ5)(SEQ3)(1).
COUNT (SEQ2)(SEQ3)(2).

DIAGONAL (mnemonic: DIA)

- out
e

put
IA

addrts?
er

T

a

he
i0

" t^°^^ m^ a^ess and
matrix are used t ; fo™ T d

n

lag°nal elements °f the first
second operSfaldre'r ^leY™ ^^ WMch " °^put to the

DIAGONAL (SEQ2)(SEQl+).

DIMENSION (mnemonic: DIM)

The DIMENSION operation h^ +rm „a*
address, and an outpS address ?hf. f V"?"***™' ™ input
of columns of the input S' 7 °

f r°WS and the number
second elements respJctivelv of

a

f .

used
1

to fo™ **e first and
which is output to t^'ou^tldLe^/^ief^6 ""^

DIM (SEQ2)(SEQ1).

MATRIX
Page 8

DOUBLE (mnemonic: DOU)

The DOUBLE operation has anywhere from one to twenty-one
addresses as parameters. Listing an address as a parameter negates
the effect of any previous listing of that address as a parameter
in the operation SINGLE. Listing an address as a parameter which
has not appeared as a SINGLE subparameter has no effect. Example:

DOUBLE (SEQ1) (SEQ2) (SEQ3) (SEQU) (SEQ5) (i)

.

EJECT (mnemonic : EJE
)

The EJECT operation causes the next printout to begin at the
top of a new page. EJECT has no parameters. Example:

EJECT

.

E -DIVIDE — Elementwise Divide — (mnemonic: E-D)

The E-DIVIDE operation has from three to twenty-one address
parameters. The last address is the output address; all other
addresses are for input. Each input matrix must have the same

number of rows and columns as all other input matrices for the use

of the operation. An address may be used more than once as an

input addre s s

.

Elements of the second matrix through the next to last matrix are

divided into the corresponding elements of the first matrix. Output
goes to the last address. Example:

E-DIVIDE (SEQl) (SEQ2) (SEQ3)

.

E-MULTIPLY -- Elementwise Multiply -- (mnemonic: E-M)

The E-MULTIPLY operation has from three to twenty-one address
parameters. The last address is the output address; all other
addresses are for input. Each input matrix must have the same

number of rows and columns as all other input matrices for the use

of the operation. An address may be used more than once as an

input address.
Corresponding elements of the first matrix through the next to

last matrix are multiplied together. Output goes to the last
addre s s . Example

:

E-MULTIPLY (SEQ3)(SEQ2) (l)(SEQ^).

E-ROOT -- Elementwise Square Root — (mnemonic: E-R)

The E-ROOT operation has two address parameters, an input address
and an output address. The (positive) square root of each element
of the input matrix is taken and the result goes to the output
addre s s . Example

:

E-ROOT (SEQl)(SEQ2).

MATRIX
Page 9

EXPAND (mnemonic : EXP)

of times specified by the Lo"d parameter ^ "*"'"' the ^^
-se^

8e

CtP^Se^d
b

t

e e

JS
fir

?
f™ *** -ber in which

specified by the integration of SL*653 the number of times
second parameter can be aTi™? tL

n°atl»g number; or the
is copied to the output Sdress unt^X " J** CaSe the inPut —
same number of rows as the 7 ^ °UtpUt matrix has the
is the output address! E^ple": "** ^^ The tMrd P-ameter

EXPAND (SEQ1)(SEQ2)(SEQ3).
EXPAND (SEQI)*5 5*(SEQ4).

FILE (mnemonic: FIL)

as parie'ters^'FI^i^
3 Tf^ ^ ** t0 twen^—e addresses

written :t th; end^f" ^NTIaTS 1
" ^T^16^ ^ be

most useful to the" uir
&

llflfslfs ^JlZ^Z* 1 * *?'***
his own physical tape. Since any meanfngSl use o^he FlS
a?I

r

but t

n
he
reqUi

r
S the additi°n °f aPP-P-ate IBM 3<£ JCL^ards

FILE (SEQ5).

GENERATE (mnemonic: GEN)

The GENERATE operation generates a single row vector with thefloating point numbers the user specifies vhTrJ I

GENERATE (SEQ2^ *1.* *2 .* *U.* *8.* *l6.* *32.*.

HORIZONTAL AUGMENT (mnemonic: HOR^

addr^s™SsAUT\2ra

L
i0n ^ ^ th-e t0 ^y-one

other addres^el are for input EaT" ^^ addreSS
'

a11

same number of rZt U 1 ?
P ^ ?

Ch lnput matrix must have the

address Ex^ple:
"** aM the reSult 8MS to «» 1-t

HOBIZOMTAL AUGMENT (SEQ1) (SEQM (SEQ21 (i)

.

MATRIX
Page 10

IDENTITY (mnemonic: IDE)

The IDENTITY operation has two parameters. An identity matrix,

of order specified by a fixed point number as the first operand, is

output to the address specified by the second operand. Example:

IDENTITY (20)(SEQ3).

INPUT (mnemonic: INP^

The INPUT operation will input formatted or non-formatted

records from any available device. This option is primarily for

reading card images or other similar data the user may have

usually on his own tape, which would be awkward to input in the

typical card deck manner.

Never input to I (see SPECIAL COMMENTS^ using the INPUT operation

unless both the number of rows and the number of columns of the

input matrix are specified as parameters on the INPUT operation

parameter card.

The parameters for INPUT are the input address, the output
address, the number of rows of the input matrix (optional in

most cases^, number of columns, and optionally the format enclosed
in quotation marks. Examples:

INPUT (SEQ1)(SEQ2/PRINTH20U5) "(10F8.3)".
INPUT (SEQ2)(SEQ3U H8) .

INVERT (mnemonic: INV)

The INVERT operation inverts a non-singular real matrix.
The INVERT operation has five subparameters, the last three of
which are optional. The first parameter is the address of the matrix
to be inverted, and the second parameter is the output address of

the result. (The incore address option described in section III. A -

SPECIAL COMMENTS - may be used for either input, output, or both)

.

To have the determinant of the original matrix printed out, code a

(l) as the third parameter.
The inversion technique used is the Gauss-Jordan method with

pivot elements assumed to be on the main diagonal. If it is

desired that the inversion technique perform row and column
interchange, for the purpose of picking pivot elements as those with
the largest absolute value at each step of the elimination procedure,
code a (l) as the fourth parameter. The default case, pivot elements
assumed to be on the main diagonal, executes faster than when row
and column interchange is performed. For those real symmetric
matrices which have the property that the largest elements are

necessarily on the main diagonal (e.g. correlation, cross-products,
variance-covariance matrices^ numerical accuracy of the results is

not significantly different between the two options. For general
matrices in which specific properties are not known, using row and
column interchange will probably produce more accurate results.

MATRIX
Page 11

value of any pi^t element IsZll^^"1^7 -
If the abs°lu*«

*. nT L
p
aLLs-rL\^nth

:
™« --~ty,

m^ss-HorST^s s^sr- address

AX = Y

input to the INVERT suboperation a matrix which contains A -v Uthe constant term appearing as the last column^ variables) Alresulting output of the INVERT suboperation will be

A
-1

:X

The Y above may be more than one column vector in which case eachresulting column vector of X will be the solution fv£ +>, .

column of Y. Examples:
solution for the corresponding

INVERT (SEQ1)(SEQ2).
INVERT (SEQif)(SEQ3)(D(l).
INVERT (SEQ2)(SEQU)(1)(

) *10.E-5*.
INVERT (SEQ5)(SEQ1)(

) (l) *. 0000001*.

LABEL (mnemonic: LAB)

a sohpa^S
°peration is used to store a title and column labels at

islimited to
6

128 ch ^ ^^ * mTRIX Pr°^- The title

each
characters. Labels are limited to eight characters

The first parameter is the address where the title and labelsare to be stored. This is then followed by the title and labels

"v one
C

timf ^
qUOtat±°n ^^ °nly <** label set S a^ at

tX? \ HenCe
'

Sach USe of LABEL overrides all previous uses

progrLf
ne

(n

a

ot

e

e.

Wi
Th

in
-

a "™ »«*«» -7 «* be passed%Toth r'programs. (note: The mcore address option may be used to store atitle and label set if desired.) Examples:

LABEL (SEQ» "TITLE" "LABEL 1" "LABEL 2" "LABEL VLABEL (SEQ1) "ONLY A TITLE; NO LABELS".
'

LAG (mnemonic: LAG)

The LAG operation has five operands; an input address aninteger specifying which variable is to be lagged an inteSrspecifying the number of lag periods, an inteffr option fSand an output address.
integer option flag,

MATRIX
Page 12

If the option flag is zero, intermediate lags are included
in the output matrix; if the option flag is non-zero, intermediate
lags are not included.

For example, suppose we are interested in lagging the
fourth variable of a five variable matrix and suppose we want
three lag periods. First it should be noted that the resulting
output matrix will necessarily have three fewer rows (observations)
than the input matrix.

If we use

LAG(S1)(10(3)(0)(S2).

th
the resulting t row to the output address would be

X
t,l

X
t,2

X
t,3

X
t,^

X
t,5

X
t-3,^

X
t-2,l+

X
t-1,^

If we use

LAG(S1)(U)(3)(1)(S2).

th
the resulting t row to the output address would be

X
t,l

X
t,2

X
t,3

X
t,5

X
t-3,^

Note that the difference between the option flag being zero

and non-zero is that the resulting output matrix has W-l

fewer lags where N is the number of lag periods (i.e. the

intermediate lags are not included in the output).

As a concrete example consider the following input on SI.

1 2 3

k 5 6

7 8 9
10 11 12

13 Ik 15

16 17 18

Use of the statement

LAG(S1)(2)(2)()(S2).

will result in the following matrix to be output to S2.

7 8 9 2 5

10 11 12 5 8

13 ll+ 15 8 11

16 17 18 11 Ik

Use of the statement

LAG(S1)(2)(2)(1)(S2)

MATRIX
Page 13

will result in the following matrix to be output to S2.

7 8 9 2
10 11 12 5

13 11+ 15 8
16 17 18 11

LOWER TRIANGLE (mnemonic: LOW)

The LOWER TRIANGLE instruction copies a matrix from one
address to another and sets all elements which are above the
main diagonal to zero. It is possible to indicate if it is
desired that the main diagonal elements also be set to zero.

The LOWER TRIANGLE instruction has three operands; an
input address, an output address, and an integer option flag.
If the option flag is omitted or is zero, the main diagonal
elements are included as part of the lower triangle. If the
option flag is non-zero, the main diagonal elements are set to
zero. Examples:

LOWER (SI) (S3).

LOWER (S2)(Si+)(l).

MAXIMUM (mnemonic: MAX)

The MAXIMUM operation has three operands; an input address, an
output address, and an option indicator.

If option is specified, the resulting output matrix is a single
row vector containing the maximum element of each column of the
input matrix. Specifying no option is equivalent to specifying option
0.

If option 1 is specified, the resulting output matrix is a single
column vector containing the maximum element of each row of the
input matrix.

If the option is specified as any number other than or 1, a
single element matrix is output which contains the maximum element
of the entire matrix. Examples:

MAX (SEQ1)(SEQ3).
MAX (SEQ1)(SEQ2)(2).

MINIMUM (mnemonic: MEN)

The MINIMUM operation has three operands; an input address, an
output address, and an option indicator.

If option is specified, the resulting output matrix is a
single row vector containing the minimum element of each column
of the input matrix. Specifying no option is equivalent to
specifying option 0.

If option 1 is specified, the resulting output matrix is a
single column vector containing the minimum element of each row
of the input matrix. Examples:

MEN (SEQ1)(SEQ3).
MEN (SEQ1)(SEQ2)(2).

MATRIX
Page Ik

MOVE (mnemonic: MOV)

The MOVE operation moves (actually copies) a matrix from one

SOUPAC standard input source to another. If reading from SEQUENTIAL,
the MOVE operation assumes that the data set was created using SOUPAC
conventions, i.e. by some SOUPAC program. If the input source is

CARDS, the input deck must be preceded by a correct DATA format
statement and terminated by an END# card.

Never MOVE from CARDS to I (see SPECIAL COMMENTS) unless both
number of rows and number of columns of the input matrix are

specified at the front of the data deck.
The operation has between two and twenty-one addresses as

parameters. The first address is the input address. All remaining
addresses are output addresses. Examples:

MOVE (CARDS) (SEQ1) (SEQ2)

.

MOVE (CARDS) (SEQl).

MULTIPLY (mnemonic: MUL)

The MULTIPLY operation has three addresses for parameters. A

matrix multiplication is performed between the matrices on the first

two addresses and the result is stored in the third address. The

MULTIPLY operation permits use of the same address to be used as an

input address for both first and second operands. This usage is

equivalent to using the SQUARE suboperation.

The incore address option may not be used for input of the first

operand if the first operand is different from the second. The

incore address option may never be used for output of the result.

The MULTIPLY operation destroys any matrix which has been stored

in core using the incore address option (see section III. A - SPECIAL

COMMENTS'). All calculations are done in double precision. Examples:

MULTIPLY (SEQ1)(SEQ2)(SEQ3).
MULTIPLY (SEQl)(SEQl)(SEQ2).
MULTIPLY (SEQ2) (l) (SEQ5)

.

OUTPUT (mnemonic: OUT"i

The OUTPUT operation outputs a matrix, a row at a time with or

without format control, to a user specified data set. If format

control is used, the output address specified should not be used

anywhere else in the current SOUPAC job step except with options

which also perform formatted i/O (e.g. the INPUT and OUTPUT operations

of MATRIX). The syntax of OUTPUT is two addresses, input and

output addresses respectively, optionally followed by the desired

format enclosed by quotation marks. Examples:

OUTPUT (SEQ1)(SEQ5^ "(20EI5.7)".
OUTPUT (SEQ2)(SEQ3^.

MATRIX
Page 15

PARTITION (mnemonic: PAR)

The PARTITION operation is used to select a sub-matrix of an

original input matrix. The first operand is the input address
and the second operand is the output address. The next four
parameters specify in order, the beginning column of the partition,
the ending column of the partition, the beginning row of the partition,
and the ending row of the partition. If either beginning parameter is

left out, the partition begins with the first row (or column). If
either ending parameter is left, the partition ends with the last
row (column). Examples:

PARTITION (SEQ5) (SEQ2) (5) (6) (2) (50)

PARTITION (SEQU)(SEQ2)(3)(^0).

PERMUTATION (mnemonic: PER)

The PERMUTATION operation permutes, on option, rows or columns

or rows and columns of an input matrix. The resulting matrix is

output to the second operand output address.
The third operand is an option flag. If the option flag is

specified as zero, columns of the matrix are permuted. If the option

flag is specified as one, rows of the matrix are permuted. If the

option flag is specified as other than zero or one, both rows and

columns are permuted.
The order of columns or rows of the output matrix is determined

by index sets. Examples:

If the statement

PERMUTE (Sl)(S2)(0)(5)(l,^).

is used and SI has the matrix

1. 2. 3. k. 5.

-1. 0. 2. .1 .3

the resulting output matrix will be

5. 1. 2. 3. h.

.3 -1. 0. 2. 1.

If the input matrix had been

1. 2. 3. k. 5- 6.
-1. 0. 2. .1 .3 k.

the resulting output matrix would be the same as the output matrix
already listed. Note that this implies that only those columns or

rows which are explicitly listed will be output.

If the statement

PER (Sl)(S2)(l)(3)(2Hl)-

MATRIX
Page l6

is used and the matrix on SI is

12 3

k 5 6

7 8 9

the resulting output matrix will be

3 2 1

6 5 h

9 8 7

If the statement

PER (S1)(S2)(2)(3)(2)(1).

is used on the matrix

12 3

k 5 6

7 8 9

the resulting output matrix will be

9 8 7
6 5 h321

MATRIX
Page I7

PRINT (mnemonic: PRI

The PRINT operation prints out a matrix, one row at a time, under

the control of a user supplied format. Formats follow FORTRAN IV

conventions with the added restriction that formats are limited to

592 characters.
The first parameter is the address of the matrix to be printed.

The second parameter is the format enclosed in quotation marks.

(Warning: Allow for carriage control as the first character in

output lines. A print line has 133 characters.) Example:

PRINT (SEQ2) "(' ',3F20.10)".

PUNCH (mnemonic: PUN)

The PUNCH operation has the same syntax as PRINT and is used to

punch out a matrix under the control of a user supplied format.

(Warning: When punching cards, remember that there is room for only

80 characters per card)

.

The PUNCH operation always punches two cards in addition to the

actual data deck. At the front of the data is punched a DATA format

card, and at the end of the data is punched an END# card. Example:

PUNCH (SEQ1)"(8F10.2)".

RECIPROCAL (mnemonic: REC)

The RECIPROCAL operation has two operands, an input address and
an output address. The reciprocal of the elements from the first
matrix are used to form an output matrix which is output to the

second operand address. Example:

RECIPROCAL (SE01) (SEQ3)

•

REMAP (mnemonic: REM)

The REMAP instruction is used when a row of the input
matrix represents several observations and it is desired to
"break up" the input row into several shorter output rows.

The REMAP instruction has three operands; an input address,
an output address, and an integer which is to be used as the
column dimension of the output address.

For example, if we have the row of data on SI
1. 2. 3. k. 5- 6.

and use the instruction
REMAP (S1)(S2)(2).

the resulting output to S2 would be

1. 2.

3. k.

5. 6.

Notice that the column dimension to be specified for the
output matrix must exactly divide the column dimension of the
input matrix.

MATRIX
Page 18

REWIND (mnemonic: REW)

The REWIND operation has anywhere from one to twenty-one addresses
as parameters. REWIND is used to rewind a sequential file. The

REWIND operation needs only to be used with the INPUT operation when
it is desired to reread a formatted input file. Example (to input
the same formatted file from SEQ 3 onto both SEQ 1 and SEQ, 2 under
control of different formats)

:

INPUT (SEQ3) (SEQ1) () (5) " (10X, 5F10.0)"

.

REWIND (SEQ3).

INPUT (SEQ3)(SEQ2)() (8) "(8F10.0)".

ROW DELETE (mnemonic: ROW)

The ROW DELETE operation specifies which rows of an input matrix
are to be deleted before sending the result to the output address.

The first parameter is the input address. The second parameter is

the output address. Rows to be deleted are specified by index
sets following the output address. Example:

ROW DELETE (i) (SEQ3) (l) (3) (7) (8) (ll) (k^) .

SCALAR (mnemonic: SCA)

The SCALAR operation has three parameters. A floating point
number specified by the second operand is multiplied by every element
of the matrix specified by the first operand. The result goes to

the third operand address.
The second operand may be either a floating point number enclosed

in asterisks or a standard SOUPAC input address. If an address is

specified, the first element of the matrix at the address is used
for the floating point number. Examples:

SCALAR (SEQ1) *2.* (SEQ2)

.

SCALAR (SEQ>)(SEQ3)(SEQ2).

SINGLE (mnemonic: SIN)

The SINGLE operation has anywhere from one to twenty-one addresses
as parameters. Listing an address as a parameter causes any matrices
written on that address to be written in single precision. MATRIX
stores all data matrices in double precision unless the user specifies
otherwise with the suboperation SINGLE. The listing of an address in
a SINGLE statement in one MATRIX program does not carry over in effect
to any other MATRIX program. Example

:

SINGLE (SEQ1)(SEQ2)(SEQ».

MATRIX
Page 19

SUBTRACT (mnemonic: SUB)

The SUBTRACT operation has from three to twenty-one address

ITeToTlL^VT .

add
r S

\
is the ™^ a^ess; all other addressesare for xnput. Each input matrix must have the same number of rowsand columns as all other input matrices for the use of the operationElements of the second matrix through the next to last matrix aresubtracted from corresponding elements of the first matrix. Outputgoes to the last address. An address may be used more than once asan input address. Examples:

SUBTRACT (SEQl)(SEQ3)(SEQl+).
SUBTRACT (SEQlO (SEQ2) (SEQ3) (SEQl) (SEQ5)

.

SUM (mnemonic: SUM)

The SUM operation has three operands; an input address, an output
address, and an option indicator.

If option is specified, the resulting output matrix is a single
row vector containing the column sum of each column of the input matrix.
Specifying no option is equivalent to specifying option 0.

If option 1 is specified, the resulting output matrix is a single
column vector containing the row sum of each row of the input matrix.

If the option is specified as any number other than or 1, a
single element matrix is output which contains the sum of all elements
over the entire matrix. Examples:

SUM (SEQ1)(SEQ3).
SUM (SEQ1)(SEQ2)(2).

TRANSPOSE (mnemonic: TRA)

and'colZ!)!^ a ma^ix (interchanges rows

address storLe ™f f destr°ys an^ Previous usage of the incore
imS If g \ tW° Parame*ers for TRANSPOSE are first thexnput address and second the output address of the result Example:

TRANSPOSE (SEQ1)(SEQ2).

UPPER TRIANGLE (mnemonic: UPP)

addSA™ "V-f-"- -Pies a matrix from one

are included as Zlf trV Mr°' the min diaS°*al elements

UPPER (S1)(S3^.
UPPER (S2)(S4)(1).

MATRIX
Page 20

VECTOR (mnemonic: VEC)

The VECTOR operation has two operands, an input address and an

output address. A single vector from the first location is used
to form a diagonal matrix which is output to the second address.

If the input matrix has more rows than columns, the first column
vector is used to form the diagonal matrix. If the input matrix
has more columns than rows, the first row is used to form the
diagonal matrix. Example:

VECTOR (SEQ1)(SEQ3).

VERTICAL AUGMENT (mnemonic: VER)

The VERTICAL AUGMENT operation has from three to twenty-one
address parameters. The last address is the output address; all
other addresses are for input. Each input matrix must have the
same number of columns as all other input matrices for the use of
the operation. An address may be used more than once as an input
addre s s

.

Input matrices from the first address through the next to the last
address are stacked top to bottom and the result goes to the last
address. All input matrices must have the same number of columns.
Example

:

VERTICAL AUGMENT (SEQl) (SEQ2) (SEQ3!

MATRIX
Page 21

Addendum to the MATRIX Program Description

KRQNECKER PRODUCT (mnemonic : KRO)

The KRONECKER PRODUCT operation forms the Kronecker Product

of two matrices and outputs the results to an output address.

The resulting output matrix is composed of m-j_ x n, submatrices

where m-[_ and n-|_ are the dimensions of the first input matrix.

Each submatrix has the size mp x n2 where va.2 and n2 are the

dimensions of the second input matrix. Note that the output

matrix has the dimensions mj_m2 x n]_n2- Each submatrix is the

result of the scalar product a. . B.

For example, if matrix A is oh SI and B is on S2 where

1. 2 13
A= -1 1 B=

.5 2 k

the result of executing the MATRIX statement

KRONECKER (SI) (S2) (S3)

•

would be the following matrix on S3.

1 3 2 6

2 k It 8

-1 -3 1 2

-2 -k 3 k

.5 1.5
1 2

RECIPROCAL OF SQUARE ROOT OF nTAflONAT, (mnemonic: RSD)

The RSD operation has two operands, an input address and an
output address. The reciprocal of the square root of the main
diagonal elements from the first matrix are used to form a single
row vector which is output to the second operand address. Example:

RSD (SEQ1)(SEQ3).

These programs were designed after the bulk of the MATRIX program
description was typed.

MATRIX
Page 2.2

II. Special Comments

A. Incore Address Option

Besides the standard SOUPAC addresses, MATRIX also recognizes
the additional address I. The I symbol as an address represents
internal storage in the machine

.

An obvious use of this feature is to cut down on I/O time for

matrices which are to be used in future operations within the
current matrix program. The internal storage feature also saves

time when the user desires his output from an operation to be
printed or punched. The user must keep in mind that data cannot
be passed to subsequent programs with the I storage. The user
should also be aware of the restrictions on I storage as mentioned
above in some of the subparameter operations (see INVERT, MULTIPLY,
SQUARE, and TRANSPOSE). In all cases the use of this option is not
recommended for matrices which do not fit within the memory available
to the MATRIX program while running within any particular region size,

l) To add the matrix on SEQl to the matrix on SEQ2 leaving
the result in core and also printing the result, code as

follows

:

ADD (SEQl)(SEQ2)(l/PRINT)

it the matrices in core, oi

; suit on SEQU, code as fcxL

VERTICAL AUGMENT (i) (SEQl) (SEQ2) (SEQ»

To vertically augment the matrices in core, on SEQl and on

SEQ2, storing the result on SEQ4, code as follows:

Labeled Output

Provided in the MATRIX program is the facility to title and put

column labels on any matrix which is printed using normal SOUPAC

print conventions. The labeling feature is not allowed with the

PRINT matrix operation.

To use the labeling feature, it is first necessary to put the

title and labels in a temporary storage area. This is accomplished

with the LABEL operation (see Subparameter s)

.

To use a label which has been placed in a temporary storage area,

code (L) after the print portion of the output address. If F

format is also desired code either (F,L) or (L,F) after the print.

Example s

:

1) To move (copy) the matrix on SEQl onto SEQ5 printing the

result in F format with title and column labels, code as

follows

:

MOVE (SEQl) (SEQ5/PRINT (F, L))

.

MATRIX
Page 2 3

2) To add the matrices on SEQ1 and SEQ2 storing the result on
SEQ3 and also printing the result with title and column
labels, code as follows:

ADD (SEQ1)(SEQ2)(SEQ3/PRINT(L)).

3) To transpose the matrix stored on SEQ1 to SEQ2, printing
out the result in F format with title and column labels,
and punching out a card deck of the transposed matrix,
code as follows

:

TRANSPOSE (SEQ1)(SEQ2/PRINT(L,F)/X).

TRANSFORMATIONS

I. General Description

TRANSFORMATIONS is a data manipulation program. Unlike MATRIX, which performs

operations on a complete matrix, TRANSFORMATIONS operates upon matrices one row

at a time. This strategy provides for almost unlimited flexibility in trans-

forming your data. Some of the general uses include creating new variables as

functions of present variables, recoding or collapsing data, and reordering or

eliminating variables. More advanced uses are facilitated by an instruction

set which allows testing and branching depending on single variable character-

istics or relations between variables, indirect addressing (FLAG-NOTATION), and

inputting and outputting to and from different sequential units during the program,

TRANSFORMATIONS serves several purposes in the SOUPAC system. First, it

can be used as a stand alone program to perform computations on your input data

and yield the final results. Also, it can be used to prepare your data for

input into another SOUPAC program or to make modifications from the output of

one program for input into another.

II. Parameters

Parameter
Numhpr Use or Meaning

1 Input address of the main input matrix.

CARDS or SEQUENTIAL 1-15- This parameter can

be left out if there is no input or if input

comes from the input instruction.

The format of the entire TRANSFORMATIONS program follows

:

TRANSFORMATIONS (C or Sn, n<15).

'. subparameter cards which describe the transformation to be performed

END PROGRAM

III. Programming Considerations

The TRANSFORMATIONS program, as described in the first section, reads in one

row of data at a time and then it executed the program until the end or until

a last card instruction, and then it cycles on the identical program for each

row of data.

There are 2000 variables allowed in the TRANSFORMATIONS program. Before

each row of data is read into the program variables 1 through 1000 are filled

with zeroes. Variables 1001 through 2000 are zeroed out only before the program

begins so that during the program they can be used for accumulating sums or

related totals as well as being used for temporary storage variables for row
manipulations

.

Input to the program can be specified by the parameter on the TRANSFORMATIONS
card or by the INPUT instruction. Output can only be achieved by use of the

OUTPUT instruction.

IV. Semi-table of Contents

Section 5 - Subparameter List Section 9 - DO-notation
Section 6 - Labels Section 10- FLAG-notation
Section 7 - Subparameter Descriptions Section 11- A TRANSFORMATIONS Example

Section 8 - EBCDIC Tables Section 12- Notes and Ideas

V. Subparameter List

TRANSFORMATIONS
PAGE 2

mnemoni c notes operation name examiDies

ABO Abort ABORT.

ABS 1 Absolute Value ABS ID(21).

ADD 1,2 Add ADD
ADD

Cl)(2)(2l).

(D(3)(5)(T)(22).

ANG 1 Angle to Radians ANG (D(21).

A-C 1 Arccosine A-C (D(21).

A-S 1 Arcsine A-S (D(21).

A-T 1 Arctangent A-T (D(21).

C-G Computed Go To C-G (l00)"A""B""C""D".

CON 3 Constant CON
CON

(101)*!+. 3*.

(102)(7).

COS 1 Cosine COS (D(21).

DIF 2 Difference if DIF (1)(5)"A""B""C".

DIV 1,2 Divide DIV
DIV
DIV

(D(2)(21).
(D(2)(21)(3).
(1)(2)(21)(3)"A".

EBC 1 EBCDIC EBC (D(21).

EXC 1 Exchange EXC (1)(2).

EXI Exit EXIT

EXP 1 Exponent Base e EXP (D(21).

FAC 1 Factorial FAC (D(21).

FIX 1 Fixed Point Conversion FIX (D(21).

FLO 1 Floating Point Conversion FLO (D(21).

GO Go to GOTO "A".

IF Arithmetic If IF (1)"A""B M
"C".

INP Input from Unit INPUT (S2)(200).

LAS Last LAST

ELO 1 Log base e ELOG (D(21).

LOG 1 Log base 10 LOG (D(21).

MAX 1,2 Maximum Value MAX (D(2)(21).

MIN 1,2 Minimum Value

MAX (1)(3)(5)(7)(9)(22)

MIN (l)(2)(2l).
MIN (1)(3)(5)(7)(9)(22)

MOD 1,2 Modular Arithmetic MOD (1)(5)(21).

MOV 1 Move MOVE (l)(2l).

TRANSFORMATIONS
PAGE 3

mnemonic notes operation name examples

MUL

NO

OUT

PER

RAD

RAI

REC

SIG

SIN

SKI

SQU

SUB

1,2 Multiply

No operation

3 Output to Unit

3 Permut e

1 Radians to Angle

1,2 Raise to Power

1,2 Recode

1 Sign Transfer

1 Sine

2 Skip record on unit

1 Square root

1,2 Subtract

MUL (l)(2)(2l).
MUL (1)(3)(5)(22).

NOOP.

OUT (S3)(l,50).

PER (100)(5)(1,M(8,9)(7).

RAD (l)(2l).

RAI (1)(2)(21).

REC (1)"GT M (2)(3)*11*.

REC (7)"EQ"*3*(7)*0*(7)*1*.

SIGN (l)(22).

SINE (l)(2l).

SKIP (S2)(100).
SKIP (S3)*l*.

SQU (l)(2l).

SUB (1)(2)(21).

XAD - add

XDI - divide These fixed point instructions are identical in operations
.

f
performed and format with the corresponding floating point

instructions, except that all variables appearing in these
XMU - multiply instructions must be in fixed point representation.

XSM - sum

XSU - 'subtract

2.

For all parameters containing variables or floating point constants, DO
notation may be used to indicate repetition of the operation on different
sets of variables and/or floating point constants. (Explanation of D0-

notation appears in Sec. 9).

All input parameters of the instruction which contain variables may be

replaced by floating point constants.

3. For all parameters containing variables, DO-notation ranges may be
substituted for a single variable occurance. (DO-notation ranges are

described in SEC. 9)

TRANSFORMATIONS
PAGE k

VI. Transformations Labels

In TRANSFORMATIONS there are several instructions which perform
some kind of test on your data. In most cases, the results of that
test cause the program not to execute the next sequential instruction,
but to branch to some other statement in the TRANSFORMATIONS program
and continue executing with that statement. In order to refer to these
statements we wish to transfer to, TRANSFORMATION'S labels are
employed

.

The form of these labels can be illustrated by the following
example which skips over the divide statement if the divisor is zero.

IF (3
1 "NEXT" "JUMP" "NEXT",

"NEXT"DIV (2H3)(^.
"JUMP" next statement

or

IF(3) "*+l" "*+2" "*+l*.
DIV (2) (3) (4).

next statement

The preceding equivalent examples exhibit the two types of TRANSFORMATIONS
labels. The syntactical rules which govern the two types of labels
follow.

Type 1

A. A type 1 label consists of eight or less alphanumeric characters
set off by a pair of quotes.

B. Alphanumeric characters consist of the alphabet from A to Z
and the numberic digits from to 9.

C. Any unique label may appear as an operand or branch address of
any number of TRANSFORMATIONS subparameter instructions.

D. Any label which appears as an operand or branch address of an
instruction must appear immediately preceding and be part of
at least one and only one TRANSFORMATIONS subparameter instruc-
tion in the present TRANSFORMATIONS program.

Type 2

A. A type 2 label consists of a positional reference of the
form *+n set off by a pair of quotes.

B. The symbol * is pointing to the statement in which it appears.
Therefore *+l would point to the next statement, *+2 would skip

TRANSFORMATIONS
PAGE 5

one statement, and *-l wuld point to the preceding statement.

C. This type of label need only appear as an operand or branch
address and not before the TRANSFORMATIONS subparameter
instruction which it is referencing.

D. Since the statement to which you are going to branch is always
indicated relative to the statement from which you are branching,
it is possible to point to an address which would lie beyond the
end of the program or before the beginning of the program.
Needless to say, this would result in an error condition.

E. Branching to "*+0" would create an infinite loop and is also
illegal.

TRANSFORMATIONS
PAGE 6

VII. Subparameter Description

ABO

The ABORT instruction causes immediate termination of the TRANSFORMATIONS

program and the entire SOUPAC program. This instruction is often

transferred to when internal tests reveal incorrect data. Example:

ABORT.

ABS

The ABSOLUTE VALUE instruction takes the absolute value of the first

variable and stores it into the second variable. Example:

ABS (3) (25).

ADD

The ADD instruction has from three to one hundred parameters
pointing to variables. The first variable through the next to last

variable are summed and the result is stored into the last variable.

Example s

:

ADD (6) (7) (23).

ADD (1) (3) (5) (7) (9) (100).

ANG

The ANGLE TO RADIANS instruction converts the first variable, which
should be a measure of an angle, into radians and stores the result

into the second variable. Example:

ANG (3) (17).

A-C

The ARCCOSINE instruction takes the arccosine of the first variable

and stores it into the second variable. The first vairable must be

between minus one and one inclusive. The result will be stored in radians.

Example

:

A-C (7)(3l+).

A-S

The ARCSINE instruction takes the arcsine of the first variable and

stores it into the second variable. The first variable must be

between minus one and one inclusive. The result will be stored in

radians . Example

:

A-S (9)(13).

TRANSFORMATIONS
PAGE T

A-T

The ARCTANGENT instruction takes the arctangent of the first

variable and stores it into the second variable. Example:

A-T (8) (70).

C-G

The COMPUTED GO TO has from two to twenty two parameters. The

first parameter contains a variable and the following parameters contain

labels. The basic form is

C-Gtv)"^" "L
2
" "L " "L

n
M

. where n < 21

The variable must be floating point. If it is not of integral value
then it is truncated, (all digits to the right of the decimal point are

dropped") . The instruction will then branch to the label whose position
in the list is equal to the integral value of the variable. Example:

C-G (7) "A" "B" "C" "D" "E".

If variable 7 is equal to k.O or k.3 then the instruction will branch
to label "D".

CON

The CONSTANT instruction contains from two to one hundred parameters.
The instruction is used to assign constant values to variables. The

first parameter indicates either a variable or range of variables.
The subsequent parameters contain the fixed point constant (s) and/or
the floating point constant (s) which are assigned to the variable (s).

Example s

:

CON(7)(99) assigns fixed point value 99 to variable 7.

CON(8)*!+.3* assigns floating point value ^.3 to variable 8.

CON(7,8)(99)*-U.3* is equivalent to the previous two together.

The more complicated structures which contain ranges and increments for
the variables and constants, uses DO-notation which is explained in Sec. 9.

An example of the CONSTANT instruction with that structure will be included
in that section.

COS

The COSINE instruction takes the cosine of the first variable and
stores it into the second. The first variable must be expressed in

radians. Example:

COS (1)(17).

TRANSFORMATIONS
PAGE 8

DIF

The DIFFERENCE IF instruction contains five parameters. The first

two parameters point to variables and the next three contain labels.

The second variable is subtracted from the first. If the difference is

negative the instruction branches to the first label, if the difference

is zero it branches to the second or middle label, and if the difference

is positive it branches to the third or last label. Example:

DIF (3) (5) "A" "B" "C".

If variable 3 minus variable 5 is negative the instruction will branch
to label "A".

DIV

The DIVIDE instruction contains from three to five parameters. In the

case of three parameters, the first variable is divided by the second variable
and the result is stored in the third variable. A division by zero will
terminate the program. -Example

:

DIV (1^(2^(30^.

In the case of four parameters, the division will take place as normal except

when the second variable is zero. In that event, the fourth variable will

be stored into the third variable as a supplied quotient. Example :

DIV (1) (2) (30) (3D.

If the fifth parameter is added, it indicates a label to be branched to

in the event of a division by zero. The branch will take place after

the supplied quotient is stored into the third variable. Example:

DIV (1) (2) (30) (3D "ZERO".

EBC

The EBCDIC instruction converts characters, which are read into the

program by means of an Al format field, into floating point numbers.
The first variable contains the character. The result after the
table look up will be stored into the second variable. Example:

EBC (6) (89^.

The table used for the conversions is located following the
subparameter descriptions. This instruction is often used to prepare
character codes for input to a SOUPAC FREQUENCY program.

EXC

The EXCHANGE instruction exchanges the contents of two variables.
Example

:

EXC (l)(2).

EXI

The EXIT instruction causes immediate termination of the TRANSFORMATIONS
program, but will continue to execute the SOUPAC program which follows-

Example

:

TRANSFORMATIONS
PAGE 9

EXP

The EXPONENT BASE e instruction raises e to the power of the first

variable and stores the result in the second variable. Example:

EXP (31) (704).

FAC

The FACTORIAL instruction calculates the factorial of the first

variable and the result is stored in the second variable. Example:

FAC (87) (120).

FIX

The FIXED POINT CONVERSION instruction converts the floating point

variable indicated by the first parameter and stores the result into

the second variable. Example:

FIX (2) (9).

FLO

The FLOATING POINT CONVERSION instruction converts the fixed point
variable indicated by the first parameter and stores the result into

the second variable. Example:

FLOAT (7) (8).

GO

The GO TO instruction unconditionally branches to the label indicated
by the only parameter. Example:

GO TO "LABEL".

IF

The IF statement has four parameters. The first parameter contains
a variable and the remaining three parameters are labels. If the
variable is negative, zero, or positive the instruction will branch to
the first, second, or third label respectively. Example:

IF (33) "L1""L2""L3".

If variable 33 is positive the instruction will branch to label "L3".

INP

By use of the INPUT instruction you can read in additional rows of
data in addition to the rows from the main input matrix. The first parameter
indicates which sequential unit the data will be input from. The
second parameter indicates the starting variable number where you
wish the row to be read in. Example:

INPUT (S3) (500).

TRANSFORMATIONS
PAGE 10

If S3 contains 6k variables then this input instruction will read the
next row from S3 and store it in variables 500 through 563. Be careful
to avoid overwriting of existing variables which you need and also of
trying to read more or less rows than exist on a particular unit.

LAS

The LAST CARD instruction allows instructions to be performed after

the last row of data has been read in and processed. The LAST instruction
divides a program into regular and last card segments. The regular

section, as is a TRANSFORMATIONS program without the LAST option, is

executed once for every row of data. After all the main input data
is processed the last card segment is executed once. One of the main
uses of the LAST instruction is to analyze data accumulated in variables
1001-2000 during the regular segment. Example:

LAST.

Only one LAST instruction may be used for TRANSFORMATIONS programs and
branching between regular and last card segments is prohibited.

ELO

The LOG BASE e instruction takes the natural log of the first variable
and stores it in the second variable. Example:

EL0G (3) (17).

LOG

The LOG BASE 10 instruction takes the base 10 log of the first
variable and stores it into the second variable. Example:

LOG (18) (3k).

MAX

The MAXIMUM VALUE instruction has from three to one hundred parameters
pointing to variables. The variable with the largest value from the
first variable to the next to last variable is stored into the last
variable . Example s

:

MAX (1)(2)(7).
MAX (1) (7) (8) (11) (15!

MIN

The MINIMUM VALUE instruction has from three to one hundred parameters
pointing to variables. The variable with the smallest value from the
first variable to the next to last variable is stored into the last
variable. Examples:

MIN (11) (13) (29).
MIN (1) (3) (k) (7) (8) (10) (12).

TRANSFORMATIONS
PAGE 11

MOD

The MODULAR ARITHMETIC instruction finds the value of the first

variable modulus the second variable and stores the result into the

third variable. Example:

MOD (1)(U)(7).

MOV

The MOVE instruction stores a copy of the first variable into the

second variable. If a value already exists in the second variable it

will be overwritten. Example

:

MOVE (3H9)-

MUL

The MULTIPLY instruction has from three to one hundred parameters

pointing to variables. The first variable through the next to last

variable are multiplied together and the result is stored in the

last variable. Examples:

MUL (l) (2^(20).

MUL (3) (k) (5) (6) (10).

NO

The N00P instruction does nothing. Its primary use is when it is

preceded by a label and used as a placeholder in the TRANSFORMATIONS
subprogram to which many different instructions branch. It is

commonly used at the end of a TRANSFORMATIONS subprogram where

several isolated groups of instructions all 'Wish to branch to the

end. Example

:

"END" N00P.

OUT

The OUTPUT TO UNIT instruction is the only way the TRANSFORMATIONS
program can output a row of data. There are two parameters. The
first indicates the unit to which the row of variables should be output,

The second parameter can be either a single variable or a range of
variables. Examples:

OUT (S2^ (7).

This will output onto S2 a row with one variable.

OUT (sU)(8,lU).

This will output onto Sk a row with seven variables, variable eight
through variable fourteen. All outputs to the same unit must have the
same number of variables output. A more detailed description of types
of ranges which are allowed will appear in Sec. 9 on DO notation-

TRANSFORMATIONS
PAGE 12

PER

The PERMUTE instruction permutes the order of all or a subset of

your variables. It can have from two to one hundred parameters, all

indicating variable numbers. The first parameter indicates a starting

point of where a string of variables should be placed. The rest of the

parameters compose that string of variables. Each of the parameters
in that string represent either a single variable or a range of variables,

Examples

:

PER (lOO)(3)(lO,l^)(1+,5).

This example places variable 3 in variable 100, variables 10 through ik

in variables 101 through 105, and variables k and 5 in variables

106 and 107. A more detailed description of types of ranges which

are allowed will appear in Sec. 9 on DO notation ranges.

PER (2)(1,1999).

This example will not propagate variable 1 through all the variables.

It will perform the intended purpose of raising all variable numbers

up one

.

RAD

The RADIANS TO ANGLE instruction converts the first variable, which

should be a measure of radians, into an angle and stores the result into

the second variable. Example:

RAD (9)(13)

RAI

The RAISE instruction raises the first variable to the power contained in ti

second variable and stores the result into the third variable.

Example

:

RAISE (1)(2)(7).

EEC

The RECODE instruction recodes variables depending on the satisfaction

of a set of conditions. The sequence of parameters depends on the

number of conditions that must be met. The RECODE instruction

introduces a new set of terminology which follows:

A. RELATIONAL OPERATORS

B.

"LT" less than
"LE" less than or equal to

"EQ" equal

"NE" not equal
"GE" greater than or equal

"GT" greater than

CONNECTIVES
"AND"
"OR"
"E0R"

TRANSFORMATIONS
PAGE 1

3

C. CONDITION SET

A condition set consists of three parameters, the first and
third parameters pointing to variables and the second
parameter containing a relational operator. Any condition set is

either true or false depending upon whether the two variables
satisfy the conditions of the relational operator.

D. RECODE SET

A recode set consists of two parameters. The first parameter
indicates a variable. The second parameter indicates a variable
or a floating point constant. If a recode set is executed
the value of the second variable or floating point constant
is stored into the first variable.

The RECODE instruction consists of from one to twenty one condition
sets joined together in the case of more than one by connectives. This is

followed by a recode set to be executed if the logical product of the condi-

tion sets is true and optionally a second recode set to be executed
if the logical product is false. Examples:

REC (1|) "EQ" *3* (M *1* (M *0*.

If variable k equals 3.0 then recode it to 1.0, if not then recode it

to 0.0.

REC (6) "GE" (10) "AND" (7) "LE" (20) (110) (ill)

If variable 6 is greater than or equal to variable 10 and variable 7 is

less than or equal to variable 20 then recode variable 110 to the
value of variable 111

.

SIG

The SIGN instruction places the sign of the first variable on
the second variable. It is often used for saving signs of variables
during intermediate calculations. Example:

SIGN (l)(90l).

SIN

The SINE instruction takes the sine of the first variable and stores
it into the second variable. Example:

SIN (l)(ll).
SKI

The SKIP instruction has two parameters. The first parameter is a

sequential unit. The second is a variable or floating point number.
The number in the variable or the floating point number indicate the
number of rows to be skipped o n the specified unit. Example:

SKIP (S2)(7)
SKIP (S5) *1*.

TRANSFORMATIONS
PAGE 1^

SQU

The SQUARE ROOT instruction takes the square root of the first

variable and stores it into the second variable. Example:

SQU (13) (lM.

SUB

The SUBTRACT instruction subtracts the second variable from the first

variable and stores the result into the third variable. Example;

SUB (7)(9)(10).

XAD - fixed point addition

XDI - fixed point divides

XIF - fixed point if '

XMU - fixed point multiply

XSM - fixed point sum

XSU - fixed point subtract

The preceding fixed point instructions have the same parameters as

the corresponding floating point instructions. The variables used

in the fixed point instructions must be the fixed point representation

rather than the normal floating point representation.

TRANSFORMATIONS
PAGE l5

VIII. EBCDIC Conversion Table

Character Floating Point Number Character Floating Point Number

blank -0.
* Ik.

0.
. 75.

1 1. < 76.
2 2.

(77-
3 3. + 78.
k k.

1
79-

5 5- & 80.
6 6.

! 90.
7 7- $ 91.
8 8. * 92.
9 9-

) 93.
A 10.

» 9k.
B 11. -T 95-
C 12. 96.
D 13. / 97-
E Ik.

5 107-
F 15. J 108.
G 16. 109
H 17- > 110.
I 18. ? ill.
J 19.

J 122.
K 20. # 123-
L 21. e 12U.
M 22. i 125-
N 23. = 126.

2k. H
127.

P 25.

Q 26.

R 27.

S 28.

T 29-

U 30.

V 31.

w 32.

X 33.

Y 3k.

Z 35.

TRANSFORMATIONS
PAGE l6

IX. DO-Notation

DO-notation is a facility provided in the TRANSFORMATION program to enable
a user to easily and compactly perform an operation on a set of variables
instead of performing that operation on each of the variables individually.
This concept of DO-notation corresponds to the concept of FORTRAN DO-loops

.

The following form of DO-notation would be used in a parameter which
points to a variable.

(vls V2 , I)

V-, = the initial variable of the set

Vo = the criterion variable for termination of the set.

I = the increment

Examples

:

(l, 5, l) points to variables 1, 2, 3, h, and 5.

(l, 5 » 2) points to variables 1, 3, and 5-

(k, lU,3) points to variables k, 7, 10, and 13.

If the increment is not specified it is assumed to be 1, Example:

(2, 10, l) is equivalent to (2, 10).

A. The major use of DO-notation is to indicate repetition of an instruction
on different sets of variables. Examples:

ADD(l,5,2)(6,8)(l2,lM is equivalent to ADD(l) (6) (12)

.

ADD(3)(7)(13).
ADD(5)(8)(lU).

MUL(1,10(100)(101,107,2) is equivalent to MUL(l) (100) (lOl)

.

MUL(2)(100)(103).
MUL(3)(100)(105).
MUL(M(100)(107).

If, in an instruction containing several parameters using DO
notation, the sets of variables are unequal in length, the instruction
will cycle until the longest set of variables has been satisfied.
The variables used in the shorter sets after they have been exhausted
will be the last variables of that set. Example:

MAX(1,7,3)(1 1+,15)(13,15,2). is equivalent to MAX(l) (lk) (13)

.

MAX(U)(15)(15).
MAX(7)(15)(15).

B. The secondary use of DO-notation, called DO-notation ranges, is used
with the constant, output, and permute instructions. Instead of
indicating a repetition of the instruction on each variable in the
set, the instruction is executed once. The parameter in which the

TRANSFORMATIONS
PAGE IT

DO-notation range occurs now points to a string of variables.

Examples

:

0UTPUT(Sl)(2,T). outputs the string of variables

2, 3,1+, 5, 6 and 7-

0UTPUT(S2) (3,7,2). outputs the string of variables

3,5, and 7-

PERMUTE (l00)(3)(l0,15)(20,2l+,2).

has two parameters of DO-notation
ranges in one instruction. The instruction
places into variables 100 through 109, the

following variables: 3, 10 ,11 ,12 ,13 ,lh ,15

,

20,22,2i+

Looking at the CONSTANT instruction, we see DO-notation ranges used

to indicate strings of fixed and floating point constants as well

as strings of variables.

The first parameter of CONSTANT can point to a variable or a string
of variables. The later is the only case which involves DO-notation
ranges, so the discussion will be confined to that case.

C0N(2,*0(l)(2)(3) • places the fixed point constants one, two

and three, into the string of variables
2,3,U

By using DO-notation ranges with fixed point constants the equivalent
instruction would be

CON(2,l+)(l,3).

The next two examples are also equivalent. They both assign to

variables five through eight the floating point constants

2.5,5-0,7.5, and 10.0.

CON (5 , 8) *2 .
5**5 • 0**7 •

5**10 .
0*

.

CON(5,8)*2.5,10.0,2.5*.
The initial values of the string of
floating point constants is 2.5- The

termination criterion is 10.0. The
increment is 2.5

All three types of DO-notation ranges can be used together in the

CONSTANT instruction. The following example combines both of the
preceding sets of examples into one instruction.

CON(2,8)(l,3)*2.5,10.0,2.5*.

Note : If, when using DO-notation ranges with the CONSTANT instruction,

the string of variables is unequal in length to the total number of

fixed and/or floating point constants indicated, the string of constants

is truncated if it is longer and if it is shorter the last constant

is assigned to the remainder of the variables.

TRANSFORMATIONS
PAGE 18

X. Flag Notation

Flag notation is TRANSFORMATION'S version of indirect addressing. Instead
of a parameter pointing directly to a variable, it points indirectly to a

variable through another variable. The parameter points to a variable which
in turn points to another variable. This feature enables an instruction to
point to different sets of variables depending upon the values assigned to
the intermediate variables.

The main type of flag notation is called F-flag notation. F-flag notation
is indicated by inserting an F directly after the variable number. Example:

ADD(7F)(8F)(9F). Restriction : The values in the
intermediate variables of flag-notation
(variables 7,8, and 9 in this example)
must be in fixed point representation and
must point to a valid variable number.

Let the notation Vn indicate variable n. Example: V"7 indicates variable "J.

If V7 = 100
V8 = 150
V9 = 180

then the preceding example would generate after the indirect addressing
takes place

:

ADD(100)(150)(180).

F-flag notation can also be used with DO-notation. Example:

If V100 = 2 V110 = 6 V120 = 10
V101 = 13 Vlll = 16 V122 = 19
V102 = 5 V112 = 9 V121+ = 13

then MUL(l00F,102F)(ll0F,112F)(l20F,12l+F,2). would generate after indirect
addressing.

MUL(2)(6)(10).
MUL(13)(16)(19).
MUL(5)(9)(13).

Note that the limits of the DO-notation are extracted form the intermediate
variables and not from the final variables.

The other type of flag notation is called D-Flag notation. Its only
use is with DO-notation. The difference between it and F-flag notation is
that the limits of the DO-notation with D-flag notation are derived from the
final variables after indirect addressing takes place. Example:

Using the same variable values as above.

MUL(100D,102D)(110D,112D)(120D,12UD).

would generate after indirect addressing:

MUL(2,5)(6,9)(10,13).

or

MUL(2)(6)(10).
MUL(3)(7)(H).
MUL(U)(8)(12).
MUL(5)(9)(13).

TRANSFORMATIONS
PAGE 19

XI. A TRANSFORMATIONS Example

Let us consider a set of data consisting of ten variables. Variable

one contains a zero for females and a one for males. Variables two through
five and eight through ten all range from zero to ninety-nine and are to

be collapsed into the numbers one to four representing quartiles. Variables

six and seven are to be recoded into a dichotomous variable depending if

the value is five or not five. The output is then split into males and

females suitable for input into two separate FREQUENCY programs. Also

desired are averages from variables two through ten before recoding takes
place. Totals are kept during the regular segment and then in the last

card segment these are divided by the sample size and printed.

TRANSFORMATIONS
INPUT (C)(1).
PERMUTE (6) (8,10) (6,7).
ADD (1001)*1*(1001).
ADD (1002 ,1010) (2 ,10) (1002 ,1010)

.

REC0DE (2,8)"LT"*25*(2,8)*1*.
REC0DE (2,8)"GE"*75*(2,8)*1+*.
REC0DE (2,8)"GE"*50*(2,8)*3*(2,8)*2*.
REC0DE (9,10)"EQ"*5*(6,7)*1*(6,7)*0*.
IF (l) "BAD ""FEMALE" "MALE".
"BAD "ABORT.
"FEMALE"0UTPUT (S2) (2 ,10)

.

GO TO "END".
"MALE"0UTPUT (S3) (2 , 10)

.

"END"N00P.
LAST.
DIVIDE (1002, 1010) (1001) (1002, 1010).
OUTPUT (P) (1001, 1010).
END PROGRAM

inputs one row from cards
reorders the variables
increments row number by one
adds respective values to row totals
recodes first quartile values
recodes fourth quartile values
recodes third and second quartile values
creates dichotomous variables
branches based on male or female
aborts program due to bad data

outputs female data
branches around male output
outputs male data
this instruction is only a placeholder
indicates beginning of last card segment

calculates averages
prints sample size and averages

The regular segment is executed once for every row of card input data.

Here the values are recoded and output, while also row totals are kept
in variables greater than 1000. The last card segment is executed once
to calculate and print the averages.

TRANSFORMATIONS
PAGE 20

XII. NOTES and IDEAS

1. Missing data of the form -0.0 can be differentiated from 0.0
only in the recode statement, so if this distinction must be
made, -0.0 should first be recoded to another value before testing.

2. The valid outputs in the OUTPUT instruction are PRINT and/or
Sn, n<15.

3. When collapsing data be careful not to overlap your recoding
and inadvertently recode values twice or more.

h. The former ZAP and SPRAY instructions have been incorporated
into the CONSTANT instruction by using DO notation with
floating point constants.

5- The former RECIPROCAL instruction can now be performed using
a floating point constant of *1* in the DIVIDE instruction.

6. The ONE RECODE, TWO RECODE, OPEN WHEN, and CLOSED WHEN instructions
have all been replaced by the RECODE instruction. For those
not familiar with the new terminology in the RECODE instruction
more examples appear below.

Given: VI =10 V3 = 13 V5 = 23
V2 =23 VU = 89 V6 = -T

The following condition sets have the respective truth values.

(1) "GT" (2) is false

(3) "LE" (k) is true

(2) "EQ" (5) is true
(6) "GE" *0* is false

(2) "NE" (5) is false

(6) "LT" (It) is true

If two or more condition sets are joined by "AND", they must
all be true for the logical product to be true. If two or more
condition sets are joined by "OR", then the logical product is true
if any of the condition sets are true. If the connectives are mixed,
then the "AND" connective is of higher precedence than the other
connectives in the same way that multiply is of higher precedence
than addition in ordinary arithmetic.

BASIC POPULATION STATISTICS PACKAGE

FREQUENCY COUNTING AND
MEASURES OF ASSOCIATION

General Description

This program computes tables of the frequency of occurrence of
values that input variables take, and where appropriate, measures of
association may be computed. Input to the program may be in the form of
previously computed tables (on which measures of association will be
computed) or may be in the form of raw data. Only integer numbers
may be counted; decimal point data will be rounded. Negative values
are allowed.

A. FREQUENCY COUNTING

The following options are available

:

1. Either one-dimensional or two-dimensional tables may be
specified. For one-dimensional counts, the frequency of
occurrence for each value of the variable is listed. For
two-dimensional counts, each value of the second variable
is counted separately for each value of the first variable.

2. Control variables may be used which enable counting to be done in

up to 12 dimensions. If control variables are specified, data
must be presorted on these variables. When the value of any
variable designated a control variable changes from one row
to the next, counting is stopped and a new table is started.
Thus counting proceeds as long as the values of all control
variables remain constant.

3. The minimum and maximum values to be attained may be specified
separately for each variable to be counted (or, optionally,
not specified at all). If either the maximum or minimum values
are not specified, they will be determined from the data using
an extra read of the data. Values which fall below the
minimum or above the maximum are ignored. This capability adds
flexibility to the program and may be an appreciable cost saver.
Its misuse by gross estimates of minimum and maximum values
can, however, be costly.

k. For each cell in a one-dimensional table, the percentage, if
requested, of the total sample that were counted there will be
printed. For two dimensional tables, the percentage of the row
and column may also be requested.

5. A weighting variable may be specified. Without a weighting
variable, frequency counts are advanced by one for each occurrence
of a value. When a weighting variable is used, the frequency
counts are advanced by the value of the weighting variable for
the row. Thus some rows of data may be given more importance
than others.

FREQUENCY
Page 2

6. Labels can be given for variables so that output is more
readable. Each label is restricted to eight characters or
less.

7. Input may be from previously computed two-dimensional tables,
from which measures of association can be directly computed.

B. MEASURES OF ASSOCIATION

The following coefficients are calculated and printed on option for
two-way t able s

:

1. Chi-square and related coefficients

Let: n = total population of the table

n = number of Vertical classification a (column a)

and Horizontal classification b (row b)

n
a.

=
b
nab

n , = ^ab
• b a

oc = number of rows

P = number of columns
2

LL
(ab a. .b)

Then: chi-square =
, n
ab -

n
a.

n
.b/n

adjusted chi-square (Yate's correction for continuity) for 2x2
tables only =

2
ZZ /n , - n n - 1/2

.

, (ab a b ')

ab — -

a d

n

c (
chi-square/n \ '

1 + chi-square/n

/Chi-square/nv /
T =

((a-lHp-lf)

C and T are measures of contingency and can be looked up in con-
tingency tables. The maximum expected frequency is also printed.

FREQUENCY
Page 3

2. Lambda coefficients

Let: n = Max n
am , ab

b

n , = Max n
mb ab

a

n = Max n
.m , . b

b

n = Max
m.

a

r i

a.

Lambda =

£
a

Z
nam +

b
nmb " n .m -

• nm.

2n - n
.m

- n
m.

£
a

nam " n .m
Lambda H

£
b

n - n
m.

nmb " %.
Lambda V =

n - nm.

Lambda coefficients will be indeterminate if all values lie in

one column or row.

Lambda H can be defined as the decrease in probability of error

in predicting the H-variable when knowledge of the value of the

V-variable is considered as opposed to random guessing of the

H-variable.

Ninety-five per cent confidence limits are calculated and printed

for Lambda H and Lambda V using the methods discussed by Goodman
and Kruskal in their second article. (See references). Lambda
is always between Lambda H and Lambda V.

Weighted Lambda Coefficients

n n ,

v am ab£ Max £
„ n n

Weighted Lambda H = -—

^

B— —

^

Max £ ab
a - , —

b an
a.

n
r,

n
v,

v, mb ,, „ ab
E Max z
b .b a b .b

Weighted Lambda V = u —
n—rB Max E nab

R - a b n ,K .b

These are Lambda H and Lambda V calculated using weighted quantities
n n

l/cc —— and 1/3 —— , respectively^ instead of n .

a. .b

FREQUENCY
Page k

No confidence limits are provided for the weighted lambda coef-
ficients.

k. Gamma Coefficient

Zi

Z Z

Let: Ps =
o>,

nab [a'>a b>b nn . h ,]ab

ZE

Z
a'

Z
b'

PD =
ab

nab C a '> a b '> b n
a'b'^

Then Gamma =
PS - PD
PS + PD

Ninety-five per cent confidence limits for Gamma are calculated
using the method outlined and preferred in the second article by
Goodman and Kruskal.

References

These coefficients are discussed and compared by Leo A. Goodman and
William H. Kruskal in their article "Measures of Association for
Cross Classification", American Statistical Association Journal,
December, 195^-

The Gamma coefficient is their suggested measure.

The C coefficient was first suggested by Karl Pearson and the T

coefficient is due to Tchuprow.

The Lambda coefficients apparently were first suggested by Louis
Guttman ("The Predication of Personal Adjustment", Bulletin h8,

Social Science Research Council, New York, 19^+1 "i

The development of the approximate sampling theory and of the
machinery for calculating the confidence intervals for Lambda and
Gamma was done in a sequel article by Goodman and Kruskal: "Measures
of Association for Cross Classification III; Approximate Sampling
Theory", American Statistical Association Journal , June, 1963-

The statistics that are requested will be printed immediately
following each table.

II. Restrictions

The program is limited currently to U50 input variables and 1000
tables. Tables are restricted to a maximum of 80,000 cells,
each of which can hold a maximum count of 32, 767. As many tables as
will fit into work storage (80,000) will be computed in each read of
the data. If tables will fit into 80,000 cells, card input is allowed.
If maxima and minima are not specified for card input, data will be
transferred to disk during preread of data.

FREQUENCY
Page 5

III. Parameters

Main Parameter Card

Immediately following the program name FREQUENCY (mnemonic: FRE), the
following parameters are listed, each enclosed in parentheses with a

period after the last parameter used:

Parameter
Number Use or Meaning

1 Input Address.

2 - ignore blanks
1 - count blanks separately
2 - count blanks as zeroes

_ - normal spacing
3 Spacing . , , /

1 - one table per page

h Address of labels.

5 Variable number of weight variable.

r „ . - raw data
6 Type of input .

n - where n is the number of
previously computed tables.
If n > 1, then input must be
from cards, and each table is

a separate data deck.

If both parameters 1 and h are cards, the labels must precede data.

Subparameters

Subparameters follow the main parameter card and can be in any order.
A period must follow each subparameter statement though the statement
can be continued on more than one card. If the subparameter statement
is left out, the option is not used. In the following explanation
I = integer and F = real number .

Mnemonic Use or Meaning

PER(l) (i) (i)

.

Per cents are requested .

1 - yes

l s "k integer = total per cent
2n integer = row per cent

3 integer = column per cent

MIN*F**F* Minimum and maximum are given. The
MAX*F**F* last value is propagated to any

remaining variables. Data will be
reread if either MIN or MAX is missing.

FREQUENCY
Page 6

Mnemonic

MEA(I)(I)(I)(I).
Only applicable to

2-way tables

Use or Meaning

CONTROL (I Hi 11

ONE(l,I,lHl,I.l)
TW0(I,I,I)(I,I,I)

- no
1 - yes

1 S ^ integer = X (with a code of

Measures are requested

r2

2 both X^ and a table of expected
frequencies will be printed)

2nd integer = \ (lambda")

3
r integer = weighted X

h integer = j (gamma

^

Up to 10 control variables are allowed.

The I ' s should be the variable numbers

of the control variables.

One and only one of these two must be

.... in every program. ONE means one-way

tables. TWO means two-way tables.

In ONE, (l,I,l) specifies one range of

tables. In TWO, (l,I,l) (l,I>l) specifies

one range of 2-dimensional tables.

The notation (1,1,1
s

! has the following meaning: If it is absent com-

pletely, i.e., ONE. or TWO. then all possible tables are calculated.

The first integer is the initial value, the second is the terminal

value and the third is the increment. It means: take all values

starting at the first integer and stepping by the third integer until

you reach the second integer. If the third integer is missing, the

increment is taken to be one. If the second is also missing, then

the first is taken as a single table specification. As many as

wanted can be specified subject to the following restrictions: In

the two-way tables, no more than 5^0 separate ranges, i.e., (I, I, lHl>I> l)

can be specified.

IV. Labels

Labels can come from cards or temporary storage. Each label should

be treated as if it were two variables each h characters long. For

example, if there are 6 variables in the input data, then there would be

twelve variables for labels and the data card would be DATA(l2) (12AU)

.

All the labels are treated as one row of input n variables long.

Labels need not be given for each variable but if a variable is skipped

and more labels follow, then it should be replaced with eight blanks.

Examples

1. FRE(C).
PER(l).
C0NTR0L(1)(3)

•

0NE(2,6,2)(9).
END P

Input is from cards; per cent of totals will be printed; control variables

are 1 and 3; resulting tables are 2, k, 6, and 9. Blanks will be ignored.

FREQUENCY
Page T

2. FRE(C) (2) (1) (C)(2).

PER(l) (1) (1)

.

TW0(3)(1+) (2,6,2) (1,5,2).
END P

All per cents will be given; 2 will be the weighting variable; resulting
tables will be 3 vs h; 2 vs 1; 2 vs 3 j 2 vs 5 > ^ vs 1 ; U vs 3 ; h vs 5 ; 6 vs 1;
6 vs 3; 6 vs 5. Tables will be printed one per page and blanks will be
counted as zeroes.

Since both labels and data are on cards the deck will look like this:

FRE(C)

END S

DATA(n)(nAU)
label for first labeled variable.
ENB#
MTA(n/2)()

.label for last labeled variable

END#

3- FRE(S1)(1).
TWO.

MEA(2)(1)(1)(1).
END P

All possible two-way tables will be calculated; all four measures will be
calculated and the table of expected frequencies will be printed. Blanks
will be counted separately.

k. FRE(C)()()()0(2).
'

MEA(l)()(l).
END P

o
Input is m the form of two previously computed tables. X and weighted X
will be calculated.

Since there are two tables the deck will look like this:

FRE(C)

END S

DATA

END#
DATA

END#

FREQUENCY
Page 8

VI. Output Examples

A. ONE-DIMENSIONAL TABLE

A one-dimensional frequency table might "be output as follows

VALUE
FREQ

1

3

k

25
5

30
9
2

TOTAL
6o

This table indicates that the value 1 occurred 3 times, that the
value k occurred 25 times, and so on, for a total of 60.

B. TWO-DIMENSIONAL TABLE

A two-dimensional frequency table might look like this:

VARIABLE 1 ACROSS
VARIABLE 2 DOWN

VALUE 1 3 5

2 1 It 3

5 2 8 1

7 1 2 1

SAMPLE SIZE = 23

This table would indicate that simultaneous observations of 1 for

variable 1 and 2 for variable 2 occurred once. A value of 3 for
variable 1 at the same time as a value of 5 for variable 2 occurs
8 times. The number of observations in the sample was 23.

RANK ORTERING PROGRAM

I . General Description

A. Purpose

The RANK ORDERING program receives as input raw data matrix and
produces as output a matrix in which each element has been replaced
by a number denoting the rank of the element WITHIN ITS COLUMN. In
other words, each column of the input matrix is considered a separate
variate and will be converted to a corresponding ranking.

The smallest variate-value is assigned rank 1.0, the next largest
a rank 2.0, etc., until the largest variate-value is assigned the
highest rank. In the case of tied values, identical ranks are assigned
to equal values, the rank-number being set equal to the average of the
rank which would occur if the tied values were distinguishable. This
is sometimes known as "mid-rank method".

B. References

Kendall, Maurice G., Rank Correlation Methods , Charles Griffin and
Co., Ltd. London, I9U8.

II. Restrictions

A

.

Input

The input data to this program may come from any source. If cards
are used as input, the number of rows in the input matrix must be
specified on the data format card and the total number of elements
in the matrix may not exceed 30,000. The maximum number of rows
for any matrix input to this program is 30,000, and the maximum
number of columns for any matrix input to this program is U50.

B

.

Output

If an input matrix contains more than 30,000 elements, an automatic
partitioning of the input data occurs such that each partition contains
the maximum number of complete columns possible within the constraint
that no one partition may contain more than 30,000 elements.

The results of the ranking of each partition are output separately,
one partition per output address specified as a parameter on the pro-
gram parameter card. A maximum of twenty- one such output address are
allowed

.

CAUTION : If partitioning is anticipated, the user should specify one output
address for each partition anticipated. This warning applies especially in
the case where printed or punched output occurs. Printing and punching will
occur only for the partitions for which it is specified.

RANK ORDERING PROGRAM
Page 2

The exception is for partitions over the twenty-first one. For partitions
beyond the twenty-first, printing and punching is done if it was specified
for the twenty-first partition. However, no partitions beyond the twenty-
first one may be stored on a peripheral device (SEQUENTIAL address).

C. Data

Since all comparisons in this program are done in single word length
operands, in some cases the program may not be able to successfully
differentiate between two values which agree through the first five
significant digits and differ in subsequent digits.

III. Parameters

The parameters for the RANK ORDERING program must follow the program
name on the program call card in the order given below:

Parameter
Number Use or Meaning

1 Input Addre s s

.

2-23 Output Address.

IV. Special Comments

If RANK ORDER correlation coefficient P (Spearman's rho) is desired,
the rankings should be input to the CORRELATION program (see individual
program description) and the Product Moment Correlation coefficient
obtained.

CAUTION : Input to the CORRELATION program is restricted to 175 columns
(variables)

.

STANDARD SCORES

General Description

This program is used to calculate the following:

_ N

Mean: i=l
1J

N

Standard Deviation:

Variance

:

V.

Standardized Scores:

S.=

- N N

N E XT. - (2X. .)

i=l ^ i=l ^
J 2 ,

L '
J

z.

.

ID

X. .

10
X,

1/2

IX

Moving Averages: X J

i=l
1J

where b=number of periods

II. Restrictions

A. The maximum number of variables is ^50.

B. Means, standard deviations, and W's may be calculated using as many
as 30 control variables. Data must be presorted (for instance with
SORT-MERGE or on a card sorting machine) on the control variables.

C. In obtaining moving averages where nvar = number of variables
and b = length of period, nvar*b is fixed for any core size.

If a design will not fit, a message will be printed giving proper
increment for Region. At 200K approximately 12000 cells (nvar*b)
are available

.

D. Moving averages are exclusive of all other options.

E. Output is of four categories:

1. With or Without Control Breaks

a. Sample size, mean, standard deviation and variance.

b. Moving averages: sample size, mean, standard

deviation and variance.

Without Control Breaks

a. Standard scores, printed output includes sample size,

mean, standard deviation and variance. Missing data

option for mean, etc., is possible, but user is cautioned

against its use. Means, etc., may be output to a

temporary storage location.

STANDARD SCORES
Page 2

Standard scores about a given mean and standard deviation.
Printed output includes sample size, mean, standard
deviation and variance. Missing data option for mean,

etc., is possible. Output may consist of standard
scores and about a given mean and standard deviation.
Output may be print and/or two different temporary
storage locations. Means, etc., may be output to a
temporary storage location.

III. Parameters

The parameters appear on the program call card following the
program name STANDARD SCORES in this order:

Parameter
Number Use or Meaning

1 Input Address. SEQUENTIAL 1-15 . Cards if only
- means, standard deviations, and variance desired,
or if precalculated means and standard deviation
are supplied (see parameter 10).

2 Output Address of Standardized Scores.

3 Output Address for Mean, Sample Size,

Standard Deviation, and Variance . Sample
Size, Mean, Standard Deviation, and Var-
iance can be put out on a temporary unit

.

Output is in the form of four column

vectors (N, X, S., V.).
J J

h If 1, use N-l, if 0, use N for denominator
of standard deviations. N-l gives an unbiased
estimate of the population standard deviation
and population variance. N gives the sample
standard deviation and sample variance

.

5 Output Address for Standard Scores about a

specified Mean and Standard Deviation.
SEQUENTIAL 1-13 and/or PRINT.

6 If parameter 5 is being used, place desired
Mean between asterisks, for example, *50*.

7 If parameter 5 is being used, place desired
Standard Deviation between asterisks, for
example, *5*-

8 Moving Averages: Put the number of periods
(observations) over which it is desired that
the data be averaged (i.e. b) . If control
variables are being used and/or the actual
number of observations is less than stated,
the data will be averaged using the actual
number of observations.

STANDARD SCORES
Page 3

Parameter
Number Use or Meaning

9 If set equal to 1, blanks coded as -0.0 will
be checked for. s= _ , TrX., S., and V. will reflect
reduced N. 3 3 3

10 Input Address of means and standard deviations.
1st row contains means, 2nd row contains standard
deviations. All additional rows input are ignored,
Valid only for standard scores.

If using controls, on a separate card immediately after the STANDARD

SCORES card, list variable numbers of those variables used as controls.

For example, if controlling on variables 1, 2, and k:

STA(T2)(P)

.

$C-B(1)(2)(1+).

NOTE: If there is only 1 observation and parameter k is set to 1, then the
mean, standard deviation and variance for that variable will be set to zero.

If blanks are checked and standard scores are requested, those observations
which have a blank will remain blank after calculation of standard scores.

Example (Use of Parameter 10

)

// EXEC SOUP
//SYSIN DD *

MAT.
M0V(C)(S1).
END P
C0R(S1)(S2).
MAT.
TEA(S2)(S3).
END P
STA(S1)(P)()()()()()0()(S3).
END S

DATA(lO) (10F1.0)

END#
/*

ANALYSIS OF VARIANCE PACKAGE

BALANOVA 5

A General Analysis of Variance Program for the IBM 709^-

Paul Herzberg August 1966

Statistical Service Unit Research, University of Illinois, Urbana

Table of Contents

Chapter 1. General Description Page 1

1.1 Introduction
1.2 Special features
1.3 Legal designs in BALANOVA 5

l.k Calculations for equal and unequal number of replications
1.5 Specification of a design

Chapter 2. Design Examples

OMITTED TEMPORARILY

Chapter 3 • Preparation of Input

3.1 Introduction
3-2 Data matrix examples

Chapter k. Program Details

Page 8

Page 9

Page 15

h.1 Method and program flow
k.2 Some comments on accuracy of computation
k.3 Error conditions
k.h Program checkout
h.^> Number of levels of the replication factor
h.6 Acknowledgements
^•7 References

Appendix. Key to designs in Winer and Lindquist Page 21

OMITTED TEMPORARILY

BALANOVA 5

This version of BALANOVA 5 is unchanged as far as computations areconcerned from the original program written by Paul Herzberg in August,
1966. See his write-up for explanation and references for the calculations,

Each observation (row of data) input to this program must be identi-fied by a number for each factor including the replication factor. Thesenumbers (which cannot be punched in I format) represent the levels of thecorresponding factors and must precede the dependent variables. In theoutput produced by the program, each factor is given a unique letter namebeginning with A. Thus the first column of the input data corresponds to'the levels of factor A which is described on the first factor specificationcard (see below). Each additional factor is given the next letter in tilalphabet, and a corresponding factor specification card. The dependent

onTttoLI^Vf/^r l6VelS °n the lnPUt^ and th^ are numbered

program!
*" °f dependent variables, in the output of the

name ^AL^NOvTT"^w^*?' *** followlnS Parameters follow the programname, BALANOVA 5; with the first four parameters being required.

Parameter
Number Use or Meaning

1

2

Input Address. SEQUENTIAL 1-15 OR CARDS.

Number of factors counting replication
factor if there is one. Maximum = 10.

3 Number of dependent variables.
Maximum = 200.

k Number of levels of the 1
st

factor.

J 1-3 lMirm'hov <->-P 1 Q,r»i ^ „.p j--u _ ^,__ i -, „th

11+

Number of levels of the 2nd - 10
th

factors,

1 if desire unweighted means analysis even though
have proportional cell frequencies.

p 1 to suppress printing of cell means,

fs„„+•"? t
he Pr°eram card is a separate subparameter card (factor speci-

the innTtT^ I T* f&Ct °T ln the 0rder in Which the Actors appear inthe input data. Each card has the following parameters.

Parameter
Number Use or Meaning

if fixed factor
1 if random factor

if not the replication factor
1 if is the replication factor

BALANOVA 5

Page 2

Parameter
Number Use or Meaning

3-11 factors in which this factor is nested

As in other SOUPAC programs, parameters at the end of the card which are

not used may be deleted and the period appear after the last non-zero para-
meter. The factor specification cards must be followed by an END PROGRAM
card.

BALANOVA 5

Chapter 1. General Description

1.1 Introduction

BALANOVA 5 is a general analysis of variance program applicable to a

wide-range of balanced designs. In the case of designs with a replication
factor, BALANOVA 5 allows inequality in the number of replications in each

cell. If the number of replications is equal or proportional, the analysis

is handled by least squares (weighted means). If the number of replications
is not proportional then an unweighted means analysis is performed. This

is an approximation to the least squares solution.

BALANOVA 5 accepts some designs that are not completely crossed, namely
those nested designs in which all main factors are balanced. Hence hierarchical
designs are allowed. As well, repeated measures designs are allowed. In these

designs the replication factor is not nested in all the other factors.

The design model may be fixed-effects, random- effects or mixed. BALANOVA 5

automatically determines all the legal sources of variation (main effects and

interactions^ and determines the correct denominator mean square for those
sources which can be tested by F test. In order to do this, BALANOVA 5 first

generates the expected mean square table which is printed in readable form.

The method used closely follows Scheffe (1959"), Chapter 8.

BALANOVA 5 will accept most of the designs described in Winer (1962),
Chapters 3, h, 5, 6, and 7 and Lindquist (1953), Chapters 3, 5, 6, 6, 8, 9,

10, and 13 (Types I, III, V1 1. Chapter 2 and the Appendix of this manual
contain a large number of examples drawn from these two books.

The author was somewhat reluctant to develop BALANOVA 5 and is hesitant
to encourage its wide use for the following reasons:

1. A general program such as BALANOVA 5 encourages the use
of statistics in a "cook-book" manner. Data is generated
to fit the input specifications of the program with no
consideration given to the theory of analysis of variance.
The experimenter who uses a computer program in this way
often neglects to consider whether the statistical test
is appropriate for the work he is interested in and whether
the assumptions needed for the test are satisfied in the
particular experiment he has used.

2. In the author's experience, the results printed by such a

program as BALANOVA 5 have a certain finality which encourages
the user to accept the results as gospel truth. When used
in this way, the experimenter forgets that there is a real
possibility of programming or machine error.

3- In the particular case of analysis of variance, the idea
has become widespread that the summary table of F ratios
is the most important part of the analysis. This is not
the case . The most important part of analysis of variance

-2- BALANOVA 5

is the estimation of the main effects and the

interactions. Only by looking at their size can

the experimenter evaluate what is happening in

his experiment. In order to encourage this use

of analysis of variance, BALANOVA 5 prints a table

of marginal means which allows easy calculation of

all the effects in the experiment. The F table is

only a set of warning signals. A non- significant

F indicates that the corresponding differences

between effects can be attributed to sheer chance.

k. BALANOVA 5 performs an unweighted-means analysis when

the replication numbers are non-proportional. The

author fears that this option will be used too often and

without consideration of its dangers. The unweighted-

means solution is often not satisfactory and references

on analysis of variance should be consulted. (Scheffe,

1959, Winer, 1962, Lindquist, 1953).

BALANOVA 5 was designed to reduce the great amount of hand computation

needed in analysis of variance calculations. It was not intended to eliminate

the necessity of the user being familiar with the theory of analysis of vari-

ance. It is hoped that the above comments will discourage some indiscriminant

use of BALANOVA 5-

1.2 Special Features

The output from BALANOVA 5 consists of

1. A table of the expected mean squares in readable
form.

2. The number of replications in each cell in the

case of designs with a replication factor.

3- The table of marginal means. All means entering
in the computation of the sum of squares are printed.

h. The analysis of variance summary table including,
for each source of variation, the sum of squares
and mean square, and for each source with denominator,
the F ratio and the probability of the chance occurance
of the F ratio.

A feature of BALANOVA 5 is its flexible specification of analysis of

variance designs, allowing a wide range of designs to be described by a

common code

.

A large number of checks are made by BALANOVA 5 to ensure that the design

is legal and that the data correspond to the design. Diagnostics are printed
to indicate all error conditions.

BALANOVA 5

1-3 Legal Design of BALANOVA 5

Consider the following definitions, taken from Scheffe (1959) • Let
there be p factors in a design, not counting the replication factor, if

there is one. A cell is specified by a set of p levels, one for each

factor. The layout of design is complete if there is at least one ob-

servation in every cell. The factors in such a design are completely
crossed. If the design is complete and there is a replication factor
(i.e. all cells have at least one observation and at least one cell has
more than one observation^ then the design is considered to be a Class A
design in BALANOVA 5-

There are many analysis of variance designs which are not complete
in the above sense. Examples of incomplete designs are Latin-square,
incomplete blocks and nested designs. The only incomplete designs
which are allowed in BALANOVA 5 are nested designs which are balanced in

all factors except for the replication factor (which need not be balanced).
These incomplete designs are called Class B and C designs. "Nesting"
"balanced" and "replication factor" are defined in the nest three para-
graphs. These definitions are illustrated in Chapter 2.

Nesting may be defined as follows: The levels of a factor C are
nested within the levels of a factor A (in short, C is nested within A)

if and only if each level of C appears with only a single level of A in

the observations. Note that if C is not nested within A, it is crossed
with A, but only if every level of C appears with every level of A is

C completely crossed with A. Latin-square and incomplete block designs
are only partly crossed.

A nested factor C is balanced if the number of levels of C is the same
within each combination of those factors within which C is nested and the
factors (if any) which are crossed with C are completely crossed.

A replication factor , in BALANOVA 5, is a factor which is nested within
one or more other factors, but not necessarily within all other factors.
Furthermore, no factor may be nested within the replication factor. That is,

a factor is a replication factor if and only if for every other factor A in
the design, it is either nested within A or crossed with A. A replication
factor may be nested within some factors and crossed with others. There can
be at most one replication factor in a design.

The distinction is made between replication factors and other nested
factors in BALANOVA 5 since replication factors do not have to be balanced .

All other factors must be balanced.

Using these definitions, the following designs are legal in BALANOVA 5-

Class A designs (completely crossed with nested replications)

Class A designs contain (p + 1) factors of which p are the main factors
and the other factor is the replication factor. The following two conditions
must both be met for the design to be Class A.

-k- BALANOVA 5

(a) All p main factors are completely crossed.

(b) The replication factor is nested in all main factors.

Thus one-way and factorial designs are Class A designs.

Class E designs (other replication designs)

Class B designs also contain (p + 1) factors of which p are the main
factors and the other factor is the replication factor. However one or
both of the two conditions, (a) and (b), are not satisfied in Class B
designs.

When (a) is not satisfied, that is, the p main factors are not
completely crossed, then the main factors must satisfy the following
condition.

(a') Consider any two main factors, A and B. Either A is completely
crossed with B, or A is nested within B or B is nested within
A. This must be true for all pairs of main factors. Further-
more, at least one pair must have the nested relationship or
else (al would be satisfied.

When (b) is not satisfied, then the following condition must be true.

(b') The replication factor is nested in at least one but not all
main factors. Note that the requirement that the replication
factor be nested in at least one factor is part of the basic
definition of a replication factor.

Class B designs then can be of the following two types.

Hierarchical designs: (a') and (b) are satisfied. The replication
factor is nested in all factors but there is some nesting among the main
factors.

Repeated measures designs: (b 1

) is satisfied. Either (a) or (a') can
be satisfied. The necessary feature (b 1

) of repeated measures designs is

that the replication factor is crossed with one or more of the main factors.
The factors in which the replication factor is nested may themselves be either
crossed (a) or nested (a').

Class C designs (no replication factor)

Class C designs have p factors and there is no replication factor.
All factors must be balanced. For each pair of factors, e.g. factors A
and B, either A is completely crossed with B, or A is nested within B or
B is nested within A. There does not necessarily have to be any nesting
at all.

BALANOVA 5

In summary, then, designs are classed in the following way in BALANOVA

5. Class A and B designs have a replication factor, Class C designs do not.

Class A designs are distinguished from Class B designs in that a Class A

must have l) all main factors completely crossed and 2) the replication

factor nested in all main factors. Class B designs violate one or both

these requirements.

In Class A and B designs, the replication factor does not need to be

balanced. However all nested factors, except the replication factor (if

any^, must be balanced. Recall that in Class A designs, the replication

factor is the only nested factor.

As explained above, the replication factor is distinguished from

other nested factors since it does not have to be balanced. There are

two other reasons for distinguishing the replication factor from other

nested factors. These reasons are important even if the replication
factor is balanced.

1. In Class A designs (completely crossed with replications) only

cell means are stored in the computer and thus very large designs

can be accommodated. The allowable number of replications in

each cell is virtually unlimited.

2. For all replication designs, whether of Class A or B, the level

number for the replication factor in each nest does not need

to run from one up to the maximum number of levels in each

nest as it does for all other factors. Any convenient numbering
of the replications may be used (e.g. a unique number for every
subject in the experiment, regardless of the nest within which
he is"> . This feature of BALANOVA 5 is especially useful when

several dependent variables are analyzed and there is missing
data for some of the subjects for some of the dependent variables.

l.U Calculations for equal and unequal number of replications

The calculations performed by BALANOVA 5 for designs with a replication
factor (Class A and B designs) depend on whether the number of replications
in each cell are equal or unequal. If the numbers are equal, the standard
analysis of variance calculation is made (least-squares or weighted means
analysis^. If the numbers are unequal, a check is first made to see if the

cell N's are proportional. In a two-way analysis of variance, for example,

the cell N's are proportional if the number of replications in the ij cell,

N-ji, satisfies

1J N
rr

where the T's indicate marginal totals. If the cell N's are proportional,
BALANOVA 5 makes the least-squares calculations, i.e. weighted means are

used. If the cell N's are not proportional, then the method of unweighted
means is used (See Scheffe, pp. 262-3 or Winer, pp. 222-U)

.

BALANOVA 5

In general, if 1, j, k, X are those factors within which the
replication factor is nested (not necessarily all the factors in the design'),

and if N
then the cell N's are proportional, if, for all combinations ijk...A,

ink. , .X ^ s ^e number °f replications in a particular nested cell,

N
N
iTT.

ijk. . . .X
T
X N

TjT.

N
,q-i

TTT.

x N
TTT X

In this formula, the T's indicate marginal totals and q is the number of
factors within which the replication factor is nested. In particular, the
one-way analysis with unequal N's is a proportional design (i.e. the cell
N's are proportional) by this definition, since

N. N.

N
i

(V
N.
1

In fact any design in which the replication factor is nested in only one
factor is a proportional design.

1-5 Specification of a Design

Any design is described by listing the following information about each
factor in the design, including the replication factor if there is one. The
information for each factor is punched on a separate card (a factor specifi-
cation card), and the cards should be in the same order as the factors are
in the input data. Each parameter should be enclosed in parentheses, and
each card terminated by a period.

Parameter 1 Type of factor. The first parameter on each
factor specification card should be a zero
if the factor is fixed, and a one if it is

random. The replication factor is always a
random factor. At least one factor in every
design must be random.

Parameter 2 Replication Factor . If the design has a

replication factor, this is indicated by
punching a one for the second parameter.
A design may have only one replication factor.
If there is no replication factor, the second
parameter should be zero (or blank) on all
of the factor specification cards.

Parameter 3-11 Nesting . The factors in which the given factor
(the one to which this card refers^ is nested
are listed. Factors are numbered from one
through the number of factors in the design.
If the factor is not nested, parameters 3-H
may be completely omitted.

-7- BALANOVA 5

An example of this way of specifying a design will be now given.

Consider a two-way analysis of variance with subjects within cells. The

design is considered to have three (not two) factors, namely A and B,

the main factors, and C, the replication factor. Suppose there are 3

levels of A and k levels of B and that each cell has 10 subjects. The

cards used to perform this analysis are listed below. Each line corresponds

to one IBM card.

TRANSFORMATIONS (CARDS) (SEQUENTIAL l) (k)

.

END PROGRAM
BALAN0VA(SEQUENTIAL D (3^ (l) (3) (k) (10)

.

(0>(0).
(o)(o).

(1)(1)(1)(2).
END PROGRAM

The first card listed above calls the TRANSFORMATION program and uses

it to store raw data from cards onto sequential file number 1 (SEQUENTIAL 1)

.

The number four is the total number of variables, independent (3) + dependent

(l). Since no transformations are performed, the END PROGRAM card immediately

follows the main program card.

The third card listed above calls the BALANOVA program. The first para-

meter is the location of the data (SEQUENTIAL V, the second is the number

of factors (3"1

, the third is the number of dependent variables (1), the fourth

is the number of levels of the first factor (3S followed by the number of

levels of the second factor (k) , and finally the number of levels of the

last factor, which is the maximum cell size (10) when considering the repli-

cation factor.

The fourth card is the factor specification card for factor 1. The first

2 parameters are zero, labeling this factor as fixed, and as not being the

replication factor. The fifth card is the factor specification card for factor

2 which is also fixed, and not the replication factor. Note that parameters
3-11 are blank, as factors 1 and 2 are not nested in any other factors.

The sixth card is the factor specification card for factor 3- Its four

parameters denote it as a random factor, as the replication factor, and as

nested in factors 1 and 2. The seventh card terminates the BALANOVA program.

-8- BALANOVA 5

Chapter 2. Design Examples

OMITTED TEMPORARILY

-9- BALANOVA 5

Chapter 3- Preparation of Input

3-1 Introduction

The following rules apply to the assignment of factor levels in all

types of designs. There is usually no need to rekeypunch existing data

however, as it is almost always possible to create the factor levels in

the TRANSFORMATIONS program. If you need help using this program, see a

SOUPAC consultant.

(al Non-replication Factors in Class A, E and C designs

The levels for non-replication factors must run from one (l) con-

secutively up to the number of levels given on the BALANOVA call card.

E.g., if a factor represents four treatment groups, these groups must be

numbered 1, 2, 3, and k and each subject's row or rows in the data matrix
must have a 1, 2, 3, or k punched to indicate the group he is in. If the

factor is nested, the level numbers must run from one (l^ up, in each

cell of the nest. See the example given in Section 3-2.

(b^ Replication Factors in Class A design

The replication numbers (level numbers"! can be anything , for example,

a subject identification number. The subject numbers do not have to be

unique either in a group or between groups. In fact, to tell the truth,

in Class A designs, the replication level is not used but it must never-

theless appear, even if it is a dummy. This statement does not apply to

other design classes.

(c) Replication Factors in Class B designs, of repeated measures type

Special care must be taken with the replication levels in those designs.

Let us divide the non-replication factors into two groups

:

a- set: those factors in which the replication factor is nested.

P-set: all other factors - i.e. those factors crossed with the

replication factor.

If the p-set is empty, the design is of hierarchical rather than repeated
measures type. See paragraph (d) below.

Let us denote by an a-cell a particular set of levels of the factors in

the a-set. The replications in this cell may be any values (not necessarily
from one (IV up) but must be distinct. Again, the numberings in two different
a- cells do not have to be distinct, but can be. In other words, if the
replication factor is subjects, an identification number may be used as the
replication level. Now each subject appears in more than one row (card) of
the data matrix since each subject appears with every combination of levels
of the factors in the p-set. Now it should be obvious that every row that
refers to the same subject has to have the same replication number. This is

the only way that BALANOVA 5 can tell that two different rows refer to the

same subject.

10- BALANOVA 5

(d'l Replication Factors in Class B designs, of hierarchical type

The subject numbers must all be different within any one cell (one

level set of the non-replication factors) but may be the same over

different cells.

Special note on missing data

If a dependent variable' field on a card is totally blank, BALANOVA 5

does not include the score in the analysis for the given dependent variable.

However other non-blank dependent variable fields on the same card will be

included in their respective analyses.

Do not confuse this deletion of missing data with an error comment by
BALANOVA 5 to the effect that there is no data cell A = 1, B = 2. This
comment means that no data card with A = 1, B = 2 had non-blank data for

the given dependent variable'.

3-2 Data matrix examples

Class A design

In all the following examples, it is assumed data is stored on

sequential file number 1 (SEQUENTIAL l)

.

Consider a two-way design with three subjects in each cell. For the

purpose of BALANOVA, subjects are also considered to be a factor, the
replication factor. Suppose that there are two dependent variables, and

further that the factor specification cards are listed in the order given
below, following the main program card.

BALANOVA (SEQUENTIAL V (3) (2) (2) (3) (3)

•

(0)(0).

(D(iHiH3 N
.

(oKo).
END PROGRAM

Note that, contrary to the usual case, the replication is the second factor.

This illustrates one flexible feature of BALANOVA 5. A data matrix could be;

1 1 1 20 19
1 2 l 8 8

1 3 l k k

1 h 2 -3 6

1 5 2 1+ 10

1 6 2 2 3

1 7 3 k h

1 8 3 6 2

1 9 3 8 k

2 10 1 2 7
2 11 1 -k 8

-11- BALANOVA 5

12 1 25 2

2 13 2 126 15

2 lU 2 2 20

2 15 2 3 3

2 16 3 1+ k

2 17 3 5 -1

2 18 3 3 2

Note that the first column is the A level, the third column is the C level
and the second column is the replication level, which in Class A designs can

be anything. The last two columns are the dependent variables. Each row
of the data matrix would be punched on one or more cards. A possible format
would be (3F5.0,3X,2F6.0)

.

The order of the rows is immaterial. They could be in any order and

have been written in a systematic order only for convenience.

Class B design - repeated measures

The data in Winer, Table 7-2-3 could be analyzed with the following pro-

gram, using three factors and one dependent variable.

BALANOVA (SEQUENTIAL l) (3) (l) (2) (k) (3)

•

(0)(0).

(oVo).

END PROGRAM

Data Card s :

1 1 l

1 2 l

1 3 l 5

1 k l 3

1 1 2 3

1 2 2 1

1 3 2 5

1 k 2 ^
etc.

d 1 5 5

2 o
5 U

2 3 5 6

2 h 5 6

2 1 6 7
2 2 6 5

2 3 6 8

2 k 6 9

Again, the rows could be any order. The subjects in the second level of factor
A could be assigned level numbers 1, 2, 3 or any other thre distinct numbers.
A possible format for this matrix is (2F5 .0,F6 .0,1X,F7.0)

.

Another repeated measure design is Winer, Table J.k-3- Here we have

four factors and one dependent variable.

-12- BALANOVA 5

BALANOVA(SEQUENTIAL l") (If) (l) (2) (2) (3) (k)

(0)(0).
(o)(o).

(1)(1)(1)(2).
(0)(0).
END PROGRAM

Data Card s

:

1 1 1 1 18
1 1 1 2 llf

1 1 1 3 12
1 1 1 k 6

1 1 2 1 19
1 1 2 2 12
1 1 2 3 8

1 1 2 h If

etc.

1 2 6 l 18
1 2 6 2 10

1 2 6 3 5

1 2 6 If 1

2 1 7 1 16
o 1 7 c 10
2 1 7 3 8

2 1 7 if If

etc.

2 2 12 1 16

2 2 12 2 12
2 2 12 3 8

2 2 12 If 8

The assignment of levels to factors A, B, D (columns 1, 2, h) has to be as
shown above, but the subjects numbers can be changed provided that, for each
(A,B) cell, no two subjects have the same number. A possible format is

(2F5-0, 1X,2F5-0,F12.0)

.

Class B design - hierarchical

Consider the following design with three factors and one dependent vari-
able.

BALANOVA (SEQUENTIAL!) (3^ (D (2) (2) (If) .

(o)(o).

(o)(o)(i).

(1)(1)(1)(2).
END PROGRAM

This is a hospitals (factor 2) within drugs (factor 1) design, illustrated
below, with unequal cell size.

.13- BALANOVA 5

Cards

:

1 1 1 5-0
1 1 2 k.2
1 2 1 5-6

1 2 £1 3-2
1 2 3 1+.6

2 1 1 5-3
2 1 2 8.2
2 1 3 k.3
2 1 U 6.3
2 2 1 5-7
2 2 2 6.8

Note that the hospitals are numbered 1, 2 in each level of factor 1 even though

there are four different hospitals involved. This is necessary since factor 2

is a non-replication factor - see the rules about Data Cards in Section 3-1-

There are 2 patients in hospital 1 for drug 1, 3 patients in hospital 2 for

drug 1, k patients in hospital 1 for drug 2 and 2 patients in hospital 2 for

drug 2. The patient numbering is flexible - it could be a different number

for every patient, regardless of hospital. A possible format is (3F5 -0,F7.l)

.

Class C design

The example in Winer, Table h.3-1, could be set up as follows, with two factors

and one dependent variable.

BALANOVA (SEQUENTIAL 1) (?.) (l) (5) (k) .

(D(0).
(0)(0).
END PROGRAM

Data Caids

:

1 1 30
1 3 16

2 1 Ik
2 o 18
2. 3 10
r-

: k 22
1 2 28

3 1 2k
2 20

3
_ 3 18

3 k 30
k 1 38
1 k- 3^
k 2 3^
k 3 20
k k kk

5 k 30

5 3 Ik

5 2 28

5 1 26

-Ill- BALANOVA 5

The rows have been written in a non-systematic order to emphasis that,
without exception , in BALANOVA 5 the data rows can be in any order. A
possible format is (2F5 -0,F10.0)

.

15- BALANOVA 5

Chapter h. Program Details

U.l Method and program flow

The program follows the procedures in Scheffe (1959) , Chapter 8. Scheffe's

discussion will not be repeated here, but only a general description of the

program flow will be given. The names of the subroutines used are indicated

in case reference is made to the program listing. Many of the minor steps

and subroutines are not described.

1. Main Program

2.

Calls subroutines and routes your data through the program.

Design input and check (iNPUTD)

The Factor Specification Cards are read and checked for errors. Many
of the error conditions mentioned in Section k.3 are checked in INPUTD.

The design is transformed into the symbolic notation of live, dead and

absent subscripts as in Scheffe.

3- Derivation of all legal sources (LEGALS,NEWS)

All possible interactions are generated but only one interaction with
a given set of subscripts is retained. The procedure is identical to Scheffe,

p. 277- para. 1. The program now has a list of all legal sources (including

the original factors'! .

k. Expected mean squares (AUXIL,EMS)

The expected mean squares for each source are, of course, not computable
numbers, bu!, rather symbolic expressions. (cf. last column, Table 8.2.2,
Scheffe). The program generates and prints these expression in a form very
close to the normal printed form. The method is from Scheffe, pp. 28U-8.

5- Denominator for each source (FINDEN)

By the standard procedures, using the expected mean squares, the program
determines the correct denominator (if any) for each source.

6. Sorting of sources for summary table (SORT)

The sources are sorted in a convenient order, combining all sources
with the same denominator. This order is then used in printing the summary
table

.

7 Input of data (INPUTX)

The input data is read from the input device (the first parameter on the
main program card' . The grand means for each dependent variable are computed,
ignoring missing (blank ^ data.

-l6- BALANOVA 5

8. Storage of data for one dependent variable (READX)

This routine as well as all the remaining ones are executed in cycle
once for each dependent variable . READX stored the data in core and checks
that no data is missing in the design. The data is actually stored as

deviations from the grand mean. This is done to improve accuracy. See
Section k.2.

9. Check of replication numbers (CELLN)

In the case of Class A and B designs, BALANOVA 5 checks whether the
call frequencies are equal, proportional or non-proportional.

10. Computation of sum of squares (SSEQU, SSPR0P,XMEAN)

The marginal means and sums of squares for each legal source are
calculated.

11. Computation and printing of final summary table (FISHER, FPRINT)

These calculations are made in the standard way.

k.2 Some comments on accuracy of computation

An attempt was made in the design of this program to eliminate the
largest sources of computational inaccuracies that can occur in analysis of
variance calculations.

Consider a one-way analysis with the following data:

Group 1 Group 2 Group 3

8.88
8.90
8.90
8.91
8.91

8.90 9-00

Sums of squares computations are generally made as the sums and
differences of two or more terms. In this example, the exact calculations
would be

SS between = 1188.2500 - 1188.1500
= 0.1000

SS within = ll88.255 l+ - 1188.2500
= 0.005*+

Note that these answers each have a string of zeros following the given digits
since they are exact. However on a computer, with about 8 digit accuracy, the
differences would only be accurate to about four decimals due to the cancellation
of all the higher order digits by subtraction.

8 77
8 79
8 80

82

ans

8 82

Me 8 80

8.96

8.99
9-00
9-02
9-03

-17- BALANOVA 5

This is illustrated by a calculation using the previous analysis of

variance program in SOUPAC. SOUPAC ' s answers were:

SS between = 0.10000610

SS within = 0.0053863525

(5 significant digits)

(2 significant digits)

Note the large errors in these SS. Even worse errors can occur in other data.

The whole problem could be avoided by accumulating a true sum of squares,

that is, by adding positive numbers to form each SS rather than taking a

difference of two large numbers. However this procedure was rejected because
it is extremely slow.

The following procedure is used in BALANOVA 5 and it is very effective.
The data are internally transformed to deviations from the grand mean . This
is why the grand means are computed in subroutine INPUTX before the deviations
are actually stored in the memory in subroutine READX. When the deviations
are used the individual terms which are added and subtracted to give each
SS are now numbers of approximately the same size as the SS itself. This
means that the number of significant digits in the SS is large even if the
grand mean is large. In the example given above, the deviation scores are:

Group 1

-•13
-.11
-.10
-.08
-.08

Means .10

Group 2

-.02
.00

.00

+ .01

+ .01

.00

Group 3

+ .06

+ .09

+ .10

+ .12

+ .12

+ .10

and the SS are computed as

SS between = 0.10000000 - 0.00000000
= 0.10000000

SS within = 0. 105^0000 - 0.10000000
= 0.005^0000

The actual results produced by BALANOVA 5 were

SS between = 0.099999998 (8 significant digits)

SS within = 0.0053999992 (7 significant digits)

Note the great improvement in accuracy.

As a final feature of BALANOVA 5, the approximate number of significant
digits in each SS is calculated and printed alongside each SS. These numbers
should not be interpreted exactly but only as a warning when they are small.
The approximate number of significant digits is calculated in the following way:

-18- BALANOVA 5

(a) Find the largest term, in absolute value, entering into the

calculation of the SS. In the example above, the largest
term in SS within is the first term (0.105U0000)

.

(b) Take the ratio of this largest term to the SS itself. In the

example, this ratio = 0.105^0000/0. 005^0000.

(c) The approximate number of significant digits is then = 8.0-log,Q
(ratio). In the example, this is 8.0-1. 38 = 6.62 which is

printed by BALANOVA 5 as 7j a pretty good estimate.

Note that the number of significant digits printed by BALANOVA 5 reflects
the loss of accuracy in the computation of the SS from two or more terms.

It does not reflect loss of accuracy due to computation of the terms them-
selves.

U.3 Error conditions

BALANOVA 5 makes a detailed check to insure that the design is legal,
that none of the computer storage arrays are exceeded and that all the data
corresponds to cells within the specified design. The following general
types of errors are distinguished and corresponding error messages are
printed giving detailed instructions about how to correct the error.

1. One of the restrictions on program size has been exceeded. These
restrictions are:

(a) maximum number of factors = 10

(b
N

; maximum number of legal sources = 100

(c) maximum size of X- storage array (used for data, means and
cell numbers) = 10,000

(d) maximum number of dependent variables = 200

(e) maximum number of sigma-squared terms in any one expected
mean square = 10

2. The factor specification cards are incorrect or inconsistent.
This is, the design is illegal. The checks made are:

(a) all nested factors must be listed as a factor.

(b) no factor may be nested within itself.

(c) at most one factor can be the replication factor.
Furthermore, the replication factor must be nested
in at least one other factor and no factor can be
nested in the replication factor.

-19- BALANOVA 5 --

(d) the factor type must be fixed or random.

(e) the maximum number of levels for each factor must be

more than one

.

(f) there must be at least one denominator term in the

analysis of variance summary table. If this is not

the case it is probably due to no factor being designated

as a random factor.

3. A Data Card has a level set which exceeds the limits stated in

the maximum number of levels on the Factor Specification Cards.

k. Once the data for a dependent variable has been read in, a

detailed check is made to insure that all cells in the design are filled.

If one cell is not, the calculation for that design is deleted and the

program moves on to the next dependent variable after printing sufficient

information for the user to locate the missing datum. An additional check

for Class B and C designs is made to insure that data for a given subscript

set is not read in twice. If two data cards specify the same level set,

a comment is made to this effect and the calculations for the dependent
variable are deleted. Note that both the checks mentioned in this paragraph
are made independently for each dependent variable and are made after the

missing data (blank fields) for that dependent variable have been deleted.
Errors referred to in this paragraph are not fatal and the program proceeds
to the next dependent variable.

5. About one dozen other checks are made. They should always be

passed satisfactorily since the design is first checked as above. These
additional checks were inserted to assist in debugging the program and

if one of them fails it indicates a remaining error in the program. A
printed message is made to this effect in these cases.

k .k Program Checkout

BALANOVA 5 has been checked on a large number of designs. Among these,

the following calculations were reproduced by BALANOVA 5

:

1. Lindquist, p. 266, Class A.

2. Winer, Table 7-8-3 (P- 376^, both least-squares and unweighted
means, Class B.

k.5 Number of levels of the replication factor

The rules in Section 1.5 and Chapter 3 are strict in the sense that,

if they are followed, BALANOVA 5 will execute correctly. However the rules
may be relaxed or ignored in the case of the number of levels of the repli-
cation factor and it is sometimes convenient to do so.

In Class A designs, any number of levels of the replication factor may
be punched on the Factor Specification Card provided the number is > 2. This

-20- BALANOVA 5

is so because in Class A designs only cell means are stored and the program
does not check the replication number anyway. This rule relaxation is use-
ful when it is inconvenient for the user to calculate ahead of time how many
subjects are in each cell.

In Class B designs, any number of levels of the replication factor may
be punched on the Factor Specification Card provided

(al the number is > the maximum number of replications
in any one nest, and

(b) the number is not so large that the restriction on
the size of the X matrix (10,000) is exceeded.

Again this rule relaxation saves the user from having to know the maximum
number of replications before using BALAW0VA 5, provided he knows an upper
limit. The restriction on the size of the X matrix will not often be ex-
ceeded. However, the user has not been informed, in this manual, how to
estimate the size of the X matrix needed, since this limit is complicated
to specify.

h.6 Acknowledgements

The general theory of balanced analysis of variance designs was first
introduced to the writer by Professor R. W. Frankmann. The procedures used
in this program are very similar to the approach he taught.

The author is indebted to John Paraskevopoulos who helped greatly in
the revision of this manual.

U.7 References

Hays, W. L. : Statistics for Psychologists . New York: Holt,
Rinehart and Winston, 1963-

Lindquist, E. F. : Design and Analysis of Experiments in Psychology
and Education . Boston: Houghton Mifflin, 1953.

Scheffe, H. A.: The Analysis of Variance . New York : Wiley, 1959-

Winer, B. J. : Statistical Principles in Experimental Design . New
York: McGraw-Hill, 19b 2.

"

~ 21~
BALANOVA 5

Appendix. Key to Designs in Winer and Lindquist

OMITTED TEMPORARILY

CLASSIFICATION

I . General Description

The CLASSIFICATION program is designed to measure individuals against
previously determined groups in order to determine probable group member-
ship. The classification is done in a reduced test space derived from
discriminant analysis. The method of classification is based on the

premise that a. group is totally described by its mean (or centroid) and

dispersion; the individual's relation to each group is determined by a
X2 which indicates how many members of the group are farther from the

centroid than he, and a Bayesian probability of membership in the group
based on this X2 . For each individual, the X2 and probability for each
group are given; the user then applies a decision rule of his choice
for assigning individuals to groups.

Since analysis is to be performed in a reduced space, the means and
dispersion of each group must also be reduced to this space. The CLASSI-
FICATION program performs these reductions.

The calculation of probabilities requires the specification of the
number of members in each group against which the individual is being
compared. This may be the numbers actually in the groups used for

finding experimental means and standard deviations or the number of
individuals from the total group being tested who are to be assigned
to each group. These numbers are specified as subparamters

.

In every case the input is expected in the form in which it is

output by the DISCRIMINANT ANALYSIS program. Input is limited to 16

groups and 50 variables.

II . Parameters

The program name CLASSIFICATION is followed by these parameters on
the program call card:

Parameter
Number Use or Meaning

1 Input Address of discriminant vectors.
The vectors are expected as columns.
CARDS or SEQUENTIAL 1-15-

2 Input Address of means. The means for a

given group are expected as a row. CARDS
or SEQUENTIAL 1-15-

3 Input Address of dispersion matrices. The
dispersion matrices are expected in a

vertically augmented form. CARDS or
SEQUENTIAL 1-15-

k Input Address of individual scores. CARDS
or SEQUENTIAL 1-15-

CLASSIFICATION
Page 2

Parameter
Number Use or Meaning

5 Output Address for inverse of dispersion

matrix. PRINT or SEQUENTIAL 1-15.

2
6 Output Address for X and probabilities for

each subject. SEQUENTIAL 1-15 and/or PRINT.

(Output on SEQUENTIAL is in the form

N., X._, X. , Y.,, Y.
1/ il' in' ll in

where N. = sequential subject number in groups

X. . = j probabilities for i subject

th 2 th .

Y. . = j X for i subject)

7 . Number of groups.

8 Number of variables.

9 Input Address of group sample sizes.

CARDS or SEQUENTIAL 1-15-

*

* Must be a row vector (l observation) with the number of discriminant

vectors as the first variable. The form output by Discriminant Analysis

Program may be used. If provided independent of Discriminant Analysis,

be sure to use single precision integer mode (I-format, fixed mode).

If sample sizes and any other input are from cards, sample sizes are

given first.

DISCRIMINANT ANALYSIS
Page 1

DISCRIMINANT ANALYSIS

I. GENERAL DESCRIPTION

Suppose that we have k populations (groups) and p measures (variables)
on each member of each population. We want to test the hypothesis that our

groups are significantly different on the entire set of variables. This

one-way multivariate analysis of variance hypothesis is tested by this

program. The program then locates the dimensions (discriminant functions)
along which the group differences are maximum. Thus, we need some

function to transform the p variates into a smaller set of independent
measures which will indicate the differences between the groups. The

DISCRIMINANT ANALYSIS program finds the independent linear functions of

the variables which maximally discriminate between the populations (groups

input 1. The results from this program, namely the discriminant functions,

may be used in the CLASSIFICATION program to determine the probability that
any subject belongs in any group. Also, by looking at the coefficients of

the functions, we can determine to what extent each of the p variates
contributes to each function. In order to do this we need to determine the

coefficients of the functions such that the ratio of variances between
groups to the variances within groups is maximized, i.e. the differences
between groups are to be large relative to the differences within groups.

In matrix terms, we are trying to maximize the ratio

f .
' Af.

f
. 'Wf

.

1 1

th -1
where f . is the eigenvector associated with the i eigenvalue \i of W A,

A = the covariance matrix between means,

k

a. . = Z N (X. - X.) (X. - X.)
ij

g=1 S ig i Dg 3

and W = the covariance matrix within classes,

k Ng
w. . = £ [E (X. - X.) (X. - X.)]
13 g=l n=l

xgn lg 3gn Jg

where k = number of groups, N = number of subjects in group g, N = total
number of subjects, and i and j run from 1 to p, where p = number of
variables.

To find the maximum, we derive from the partial derivatives of that
ratio, the matrix equation

(W
_1

A - XI) F =0

where F is the matrix of eigenvectors. The eigenvectors are the coefficients
of the discriminant functions. The relative sizes of the eigenvalues
indicate the extent to which the associated discriminant functions distinguish

DISCRIMINANT ANALYSIS
Page 2

among the groups. The percentage of the total discriminating power of

the variables contained in the j"th discriminant function is represented by

100 (

N̂ (N should be the smaller of

£ X. k-1 and p)
i=l

i

In addition to obtaining the eigenvalues and discriminating coefficients,

the program will compute scaled vectors to show the relative contributions

of the variables to the discriminant function by

f ' = (»..) ^2
/f..

id 1X ' ^

II. INPUT

Input to the DISCRIMINANT ANALYSIS program consists of two or more
data groups. Each data group consists of a set of observations on

two or more variables. All of the groups must contain observations on

the same set of variables. The groups may be input as separate card decks

(each preceded by a DATA format card and followed by an END# card), as

data groups located on separate temporary storage areas, or as a

mixture of data groups on card decks and data decks on temporary storage
areas. For examples see Section VIII.

III. SIGNIFICANCE TESTS

The measure of significance calculated in the DISCRIMINANT ANALYSIS
program is a Wilks' lambda (likelihood ratio test statistic). This is

a test of the discriminating power of the test battery. It tests the

hypothesis that the population centroids (mean vectors) are equal for
the k groups. The Wilks' lambda is a function of the roots of W_l A and
is of the following form:

r 1

A = n 1-X.

i-1

where r is the lesser of k - 1 and p. In matrix terms this criterion is

defined in the following manner:

A = W

where W is the pooled within groups deviation score cross-products and T

is the total sample covariance matrix. As |t| increases relative to |w|

the ratio decreases in value with an accompanying increase in the confidence

that the group centroids are not equal.

DISCRIMINANT ANALYSIS
Page 3

An F ratio which yields an apjroximate test of the significance of
the Wilks' lambda is calculated and printed.

F m
{

i_^JL) (a^gx.)

where s = / , 2 2 4 77, 2 2 . q = k - 1
(p q -**)/(p + q -5)

m=n- (p+q+ l)/2 n = N - 1

A = -(pq - 2)/U N = total number of subjects

r = pq/2 k = number of groups

1/2
y = I\ p = number of variables

The degrees of freedom to be used with the F value printed in the output
are printed and are labeled Fl (degrees of freedom for the numerator)
and F2 (degrees of freedom for the denominator) and equal 2r and
mx + 2A.

IV. OUTPUT

The output consists of the following:

1. Means of input variables for each group and group sample size
(Parameter Number 8)

2. A dispersion matrix for each group. (Parameter Number 9)

3. The total sample deviation score cross-products matrix

N _ _
t. . = Z (X. - X.)(x. - X.)
ij

n=1
in 1 jn j

where i and j range over the variables. This matrix is the sum
of the A and W matrix described in section I. This is the T matrix
referred to in Parameter Number 7 • The diagonal of this matrix
contains the sums of squares. (Parameter Number 6)

k. The pooled within-groups deviation scores cross-products matrix which
is labeled W on the output. (Parameter Number 6)

5. The total number of subjects in all the groups combined. (Parameter
Number 6

)

6. The means and standard deviations of the variables across all
groups. (Parameter Number 6)

7. The correlation matrix of variables over all groups. (Parameter
Number 6

)

DISCRIMINANT ANALYSIS
Page k

8. The among groups cross-products of deviations of group from grand
means weighted by group sizes. This matrix is labeled A matrix on
the output. (Parameter Number 6)

9. The eigenvalues for the W A matrix. (Printed)

10. The eigenvalues and percentage of variance explained by each
additional eigenvalue. (Printed on output, automatically)

11. The trace of the W A matrix. This is the sum of the eigenvalues.
(Printed on output, automatically)

12. The discriminant functions (f^*). The number of discriminant
function will equal r where r is the lesser of the two values
k-1 and p , where k = the number of groups and p = number of
variables. (Parameter Number l)

13- The group means on the discriminant functions. This is a

k x r matrix formed by multiplying the group means on variables
and the discriminant functions. The matrix may be used to determine
the relative positions of the groups on the derived function.
(Parameter Number 11

)

lU. The scaled vectors. These vectors are formed by multiplying the
discriminant functions by the square roots of the diagonal of

the W matrix described above. The scaled vectors show the
relative contributions of the input variables to each of the
discriminant functions. (Parameter Number 5)

15. The measures of significance described in Section III. (Parameter
Number k)

V. RESTRICTIONS

The DISCRIMINANT ANALYSIS program follow the program name on the main
program card. Each parameter must be enclosed in parentheses. The parameters
must appear in the order given below. If a parameter is not needed, do not
punch anything between its parentheses. All parentheses after the last
non-empty pair may be omitted.

Parameter
Number Use or Meaning

1 fi Output address of discriminant functions
(Matrix f. .). SEQUENTIAL 1 -15 and/or
PRINT. 1J (Needed for CLASSIFICATION).

2. Number of variables

3 Number of groups

h 1 if desire significance measures printed.

DISCRIMINANT ANALYSIS
Page 5

Parameter
Number

6

7

Use or Meaning

1 if desire scaled discriminant vectors
printed.

1 if desire intermediate results printed.

1 if input is W and T matrices instead
of raw data.

Output Address of group means on original
variable and sample size (printed only).*
SEQUENTIAL 1-35 and/or PRINT. (See Parameter

12) (Needed for CLASSIFICATION).

Q Output Address of group dispersion matrices
of original variables.* SEQUENTIAL 1-15

and/or PRINT. (Needed for CLASSIFICATION).

10 N - total number of subjects in all groups
combined. This parameter is left blank if

raw data is input rather than W and T

matrices

.

11 Q Output Address of group means on discriminant
functions. SEQUENTIAL 1-15 and/or PRINT.

12 Output Address of group sample sizes. Possibly
needed for CLASSIFICATION.

Input addresses of raw data input groups or W and T matrices
are listed on a $INPUT card. The number of raw data groups is limited
to l6. W precedes T in the sequence when these are input. W and T

may be output using a $0UTPUT card. Output order is the same as

input

.

* If W and T are input instead of raw data, group means and dispersion
matrices are not printed. Means and dispersion matrices on discriminant
functions are not computed in this case.

Q It is possible to print in F format and/or punch the output from
these parameters. If you need either of these options, see the section in
the INTRODUCTION on INPUT and OUTPUT.

VII. SPECIAL COMMENTS

1. This program does not check for missing data,
are read as zeros

.

All blank spaces

2. The user is cautioned against using the DISCRIMINANT ANALYSIS
program without an understanding of the statistical technique
used. See the references (Section IX).

DISCRIMINAM1 ANALYSIS
Page 6

. EXAMPLES
A B
/*ID /•ID
// EXEC SOUP // EXEC SOUP
//SYSIN DD * //SYSIN DD *

MATRIX

.

DIS(S1/P)(33)(M(
MOV(C)(S5). $INPUT(C)(C).
END P END SOUP
DIS(S1)(U0)(U)(1)()()()(32/P). DATA(33)(33F2.0)
$INP(C)(C)(S5)(C). ,

END SOUPAC (Data for W)
DATA (1+0)(1+0F2.0) END#

DATA(33)(33F2.0)

(Data for T)

END#
/*

END#
/*

In example A , four groups of data are being input with the first
two groups coming from cards, the third from temporary storage on S5
and the fourth from cards. Discriminant functions are stored on
SI and printed and group means are stored on S2 and printed.
Significance measures are calculated for 33 variables input. In example
B, W and T matrices are input and much the same results are obtained as
for example A. Group means cannot be calculated.
/*ID (accounting information)
// EXEC SOUPAC
//SYSIN DD *

DIS(Sl)(l5)(2)()()()()(S2)(S3)()()(Sl4).
$INP(C)(C).
CLA(S1)(S2)(S3)(C)(P)(P)(2)(15)(D(SM.
END S

DATA(15)

END#
/*

This illustrates the use of the DISCRIMINANT and CLASSIFICATION programs.
The DISCRIMINANT program will save discriminant functions on SI; it
will operate on 15 variables for each of two groups. It will output
group means on S2 and groups dispersion matrices and store group sample
sizes on Sk

.

CLASSIFICATION in turn will read discriminant functions, group means,
and group dispersion matrices from SI, S2, and S3 respectively. It

will read the group to be classified from cards and print inverse of
dispersion matrices and x and probability. It will expect two
sets of group means and dispersion matrices from 15 variables but
1 discriminant function (See Section IV). Original group sample
sizes are read from S^.

DISCRIMINANT ANALYSIS
Page 7

IX. REFERENCES

Bryan, J. F. , The Generalized Discriminant Function: Mathematical Foundation
and Computational Routine. Harvard Educational Review , (1951

)

21:90-95.

Cooley, W. W. and Lohnes , P. R. , Multivariate Procedures for the
Behavioral Sciences . New York, Wiley, 1962.

Kendall, M. G. , A Course in Multivariate Analysis . New York, Hafner,

1961, pp. 106-108.

References on output:

Wilks ' Lambda - first formula, page 119 , Cooley and Lohnes.
F ratio - formula k.l, page 62. Cooley and Lohnes.

• ^-TEST

General Description

The T-TEST program calculates a T coefficient or F ratio as described
tielow:

Suboperation (l) : Paired T-Test (also called correlated T-Test)

.

Variables are in a row, variable on is paired with variable two, three with
four, etc., and a paired T coefficient is calculated for each pair as

follows

:

t = d/s_
d

N

d = E [Xa - X3]/N. , where a and 3 are the j pair of variables

S_ = N. E [Xa - X6] 2 - (E [Xa - X3]) 2/N. 2 .f]

d J i=l i=l J

where f = degrees of freedom = N. or N. -1 as desired and N. is the sample
J J J

size for the j pair of variables.

Suboperation (2): Paired T-Test for all possible combinations of
variables computed as in Suboperation (l).

Suboperation (3) : Test of differences from a known population mean.
A population mean must be provided for each column of data or the
mean will be set to zero. Population means should be provided as a

row vector. The following are calculated and printed for each vari-
able :

t value: t = (X -jj)/S_
x

where p = parameterized value or zero

_ N -

Mean: X = E
1

X./N.
1=1

X X
? 2

N.EX7 - (EX.

)

Standard Deviation: S.D. =(
l

N.x(d.f .).
l l

NOTE: N-l is the usual degrees of freedom, but 1 may be specified.

S.D.
Standard Error of Mean: S_ = -———

-

x /~

N

Suboperation (h) : Test of difference^ from a known population mean for
previously analyzed data: the mean (X), standard deviation (S. D.), and
sample size (N) as well as the population mean [see suboperation (3)] are

T-TEST
Page 2

read in and the program computes the standard error of the mean and T
for each trio of the X, S.D., and N read in that order. If R trios of
data are used (R observations on rows occur"1 then R population means
should be given. Calculations are the same as in Suboperation (3).

NOTE: A column of data of Suboperation (3) is reduced to a three item
row here.

Suboperation (5) : Test of differences between two or more group means
taken pairwise: each group is located on a separate storage location
or set of cards. The following are calculated:

t value: t = (X. - X.)/S
1 J -

Xi - x.

Mean: X. £ Xj/Ni
2

N
2

N. T±x(" (^ Xi)
Standard Deviation: S.D.

_i=l__^l/2

N.x(d.f.).

N
2

N N. N,

b
±
z x - (z T~) N

d
£
J x

d
- (z

3
yr)

Pooled Estimate of Variance: &~ = [—

—

—— + —^ —i^](d.f.
i J

S
2
(N + N) /

Estimate of Standard Error: S_ = [t-=- <L.pf

xi - x. I d

Suboperation (6) : One-way analysis of variance. The data to be compared
are located on different storage units or sets of cards. Calculations are
made as follows for each variable

:

S = number of storage units = number of subroups

N- = number of observations in i subgroup, i=l, , S, and for

each i, j=l, , Nj_

X. . = element in the j row of the i subgroup

S

N = £ N. = total observations
i=l

S N
i

S Ni ?
Total SS = £ (£ X. .) - (z £ X±i) /N

i=l j=l J i=l J=l

Ni
£ X.j. = sum of each constant i (i.e. over the subgroup)
3=1

T-TEST
Page 3

S N S K ,

Between SS =[E E X. .]/N. - (E E X.J
i=i 3=1 J x

i=i 3=1 1J

Within SS = Total SS - Between SS

Within D.F. = Total D. F. - Between D. F.

F =

BSS
BDF

WSS
WDF

Suboperation (7) : One way analysis of covariance. The experimental
(dependent) variable comes first followed "by up to kg covariates . The

dependent variables is adjusted to the set of covariates, not iteratively
to one covariate at a time. Subgroups or factor levels are handled as

in analysis of variance, Suboperation (6), i.e. as separate input decks

or temporary storage locations. Coefficients obtained are means and standard
deviations, test of homogenity of regression, F-ratio for covariance,
and adjustment coefficients. For further discussion see Winer, p. 578 ff.

References

Bryant, E. C. , Statistical Analysis . New York: McGraw-Hill, i960.

Snedecor, G. W. , Statistical Methods . Ames: Iowa State College
Press, 1957.

Winer, B. J., Statistical Principles in Experimental Design .

New York: McGraw-Hill, 1962.

II. Restrictions

The maximum number of input variables is 150 except for Suboperation

(2), all possible paris, and Suboperation (7), covariance, where the
maximum is 50. Suboperations (5) and (6), tests of differences and analysis
of variance, require the data to be divided into 2 or more subgroups. The
maximum number of subgroups is lU.

III. Parameters

T-TEST and ANALYSIS OF VARIANCE

Parameter
Number

1

2

Use or Meaning

Suboperations 1-7- (See above).

Number of subgroups (if applicable).

T-TEST
Page h

Parameter
Number Use or Meaning

3 - Count clanks as zeros
1 - Count blanks as missing data

k - use N-l as degrees of freedom
1 - use N as degrees of freedom (See Special
Comments)

.

Input addresses of subgroups for options 5, 6, and 7 are listed on a

$-iriP card. (See section on SOUPAC Input /Output) . The maximum number of
subgroups is ik. See example for illustration. If options 1 or 2 are
used, provide only 1 input address. For option 3, provide tv6 addresses,
the first for the sample being tested, the second for the criterion means.
For option h provide two input addresses, the first for the sample being
tested, the second for the criterion means, standard deviations and sample
size.

IV. Special Comments

If it is desired to use the option of comparing the mean with some
population mean other than zero as in Suboperations (3) and (k) , a row
vector of \i must be included in temporary storage. This row vector must
be of length N = number of variables.

Most work requires N-l degrees of freedom.

V. Examples

T-TEST (l).

$INP(S1).

Paired T-Test on data stored on SI.

T-TEST (2)()(1)(1).
$INP(S15).

Paired T-Test on data stored on SI 5 doing test on all possible pairs
checking for missing data and using N degrees of freedom.

T-TEST (3)

$INP(S1)(S3).

T-Test of population means on SI against criterion means on S3.

T-TEST (5) (2).

$INP(S1)(S2)

T-Test of group mean of two groups, one on SI and the other on

S2.

T-TEST
Page 5

T-TEST (6) (k) (1).

$INP(S1)(C)(C)(S3).

One-way analysis of variance over four groups, one on SI, two from
cards, and one from S3, checking for missing data.

CORRELATIONS AND REGRESSION PACKAGE

BISERIAI CORRELATION

General Description

This program calculates the following coefficients for each com-

bination of one dichotomous and one continuous variable.

Case totals : % cases in p = N /N

% cases in q = Na/W

Total cases = N

Mean: X
p

= IXp/Np
X
q = ^q/Nq

X = £X/N

Standard deviation: Sp
2 = 2Xp2/Wp

- X
p
2

Sq
2

= £Xq2/N
q

S
2 = £X

2/N - X
2

Biserial r:
(
x
P
"x

q) pq

where p = percentage of cases in category

q = percentage of cases in 1 category
h = height of the normal curve computed from normal tables

The program checks for missing data, and computes the above measures
only for those cases where both dichotomous and continuous variables are

present.

II . Restrictions

A. Dimension

The input for the BISERIAL R program is limited to a maximum of
20 dichotomous variables and 100 continuous variables.

B. Type of input

Data is read row-wise from either tape or cards. All dichotomous
variables must be first in each row. They should be coded with

and 1

III . Parameters

The program call card requires h parameters after the program name,
BISERAL R:

BISERIAL CORRELATION
Page 2

Parameter
Number ~ Use or Meaning

1 Input Address. CARDS or SEQUENTIAL 1-15-

2 Output Address of correlations. SEQUENTIAL 1-15

and/or PRINT.

3 Number of dichotomous variables.

k Number of continuous variables.

5 - ignore blanks
1 - count blanks as zeros

CANONICAL ANALYSIS

I. GENERAL DESCRIPTION

A. Mathematics

The Canonical Correlation program provides a multivariate test of the

hypothesis that two sets of normally distributed variables are independent.

The larger set of variables (the predictor variables) is considered to

have q members, and the smaller set (criterion variables) has p members.

This program also linearly transform each set of variables into a new set

of independent variables, (or dimensions) such that the first new predictor

(a linear combination of the original predictors) has maximum correlation

with the first new criterion variable. The second new predictor is

maximally correlated with the second new criterion, and so on (with the

constraint that each new variable is uncorrelated with the previous new

variables derived from the same set of original variables)

.

Let the criteria set consist of the p_ variables x , ,x and

the predictor of q_ other variates x + -,,...., x . Assume p<_ q.. We

then look for weighting matrices c^g and d
alD

such that

K
a = 3 °3 X

3 a = 1, 2, ... p
3 = 1, 2, . . . p

b abxb a = 1, 2, P
b = p+1, p+2, . . . p+q.

The variables 5 and nhave the following properties:

1. They are standardized variables.

2. Within each set, the £'s are independent and the x\
' s are dependent

3. Within the set E,a (as a runs from 1 through p) and within the set of na

(as a_ runs from 1 through p) the correlation is zero. These matrices
are formed in such a way that E,^ and l-i » 5p and n o '

et °' are maximally

correlated giving p correlations l,....,p.

The purpose of this program is to find the p correlations A ,...,A and

the weighting matrices c and d
op ab

B Procedure

The correlation matrix R is first partioned into:

A C

where A = correlation among predictors
C = correlation between predictors and criteri a
B - correlation among criteria

CANONICAL ANALYSIS
Page 2

The matrix equation

(CA
_1

C' - X
2
B) U =

is solved to find the p correlations X , A , and the criteria weighting
matrix U whose elements are ca g. The eigenvalues D and eigenvectors H of B

are found: CA C is then post-multiplied by HD~l/2 and pre-multiplied by-

its transpose to reduce the equation to the standard form (Z - Al)U=0.

Then the predictor weighting matrix V whose elements are d is computed by
the equation

V = (A
-1 C U) 1/ X

II. INPUT

Input to the CANONICAL ANALYSIS program consists of a correlation matrix .

These variables include a set of predictor variables and a set of criterion
variables. Either set may be first on the input data but there can be no

mixing of the two types of variables on the input data. The TRANSFORMATION
program may be used to reorder the variables if they are mixed on the
card data deck.

III. SIGNIFICANCE TESTS

Included in the printed output of the CANONICAL program is a Chi-square
value for each of the eigenvalues A 2 computed in the program. The chi-square
values printed are determined from the Wilks ' lambda values using the
procedure outlined by Bartlett (see Section IX). The chi-square values
provide a test of the null hypothesis that the p_ variates are unrelated to
the q variates. If there is at least one way in which a linear combination
of the predictor variables is correlated with a linear combination of
the criterion variables this Chi-square value will be significant. The
second Chi-square may then be examined. This Chi-square is a test of
a second relationship after the first relationship has been removed. If
this Chi-square is significant a second linear combination of the predictor
variables is correlated with a second linear combination of the criterion
variables. This process continues until the first non-significant
Chi-square is found. All Chi-squares beyond that point will be non-
significant.

IV . OUTPUT

The output consists of the following:

1. The matrix of standardized regression coefficients. This is the matrix
of coefficients which would be formed if the raw data used to calculate
the correlation matrix input had been converted to standard scores.
The predictor variables are on the rows of the matrix and the criterion
variables are on the columns of the matrix.

2
2. A multiple correlation squared (R) for each of the criterion variables.

The first R^ value is the multiple correlation of the first criterion

CANONICAL ANALYSIS
Page 3

variable with the entire set of predictors variables. The second is

for the second criterion variable with the set of predictors, etc.

2

3. A set of eigenvalues A, correlations A, Wilks' lambdas, Chi-squares,
and degrees of freedom. (See Section III) (Printed)

k. A matrix of criterion weights. (Parameter Number 3)

5. A matrix of predictor weights. (Parameter Number k)

V

.

RESTRICTIONS

A. Dimension
The maximum permissible number of variables in each set is 80.

B. Special Conditions
The matrices A and B must both be non-singular

C. Number of criteria (p) aiust be equal to less than the number of
predictors (q).

VI. PARAMETERS

The parameters for the CANONICAL ANALYSIS program follow the program
name on the main program card. Each parameter must be enclosed in

parentheses. The parameters must appear in the order given below. If

a parameter is not needed, do not punch anything between its parentheses.
All parentheses after the last non-empty pair may be omitted.

Parameter
Number Use or Meaning

1 Input Address (correlation matrix). CARDS
or SEQUENTIAL 1-5-

2 Output Address of canonical correlations.
SEQUENTIAL 1-5 and/or PRINT.

3 ft Output Address of criterion weighting
matrix. SEQUENTIAL 1-5 and/or PRINT.

h Q Output Address of predictor weighting
matrix. SEQUENTIAL 1-5 and/or PRINT.

5 Number of predictor variables.

6 Number of criterion variables. (Must
be less than or equal to number of
predictors)

.

7 Order of variable sets on input:
1 if predictors are first
2 if criteria are first

Parameter
Numbers

9

10

CANONICAL ANALYSIS
Page k

Use or Meaning

Operation to be performed:
1 if only canonical correlations
2 if weights are to be computed

1 if want regression coefficients printed

1 if want multiple correlation squared
(R) printed

It is possible to print in F format and/or punch the output from these
parameters. If you need either of these options, see the section in the
Introduction on Input and Output.

VII. SPECIAL COMMENTS

This program does not check for missing data. All blank spaces are
read as zeros.

VIII. EXAMPLES

1A

/*ID <accounting information>

// EXEC SOUP

//SOUP.SYSIN DD *

CANONICAL (CARDS) (SEQUENTIAL l/PRINTi

(PRINT) (PRINT) (15) (5) (2) (1).

ENDS

DATA

END#

/*

IB

/*ID <accounting information

// EXEC SOUP

//SYSIN DD *

CAN (C) (S1/P)(P)(P)(15)(5)(2)(1).

ENDS

DATA

END#

n

Examples 1A and IB illustrate the use of the program call card for
a CANONICAL correlation program. In these examples the input data consists
of 15 predictor and 5 criterion variables and will be a card deck.
The predictor \rariables are the first 15 variables of each observation
in the data deck. The printed output will be the canonical correlations,

CANONICAL ANALYSIS
Page 5

the criterion weighting matrix, and the predictor weighting matrix. The
canonical correlation matrix will also he stored on temporary storage
SEQUENTIAL 1. 1A & IB perform same calculations.

IX. REFERENCES

For a discussion of the uses of canonical analysis, see Kendall, M.G.

,

A Course in Multivariate Analysis , New York, Hafner, 196l, pp. 68-85
or Kendall, M.G. , The Advanced Theory of Statistics , New York, Hafner
1951, Vol. II., pp. 3U8-358.

For the derivation of the method used, see Anderson, T. W. , An
Introduction to Multivariate Statistics , New York, Wiley, 1958,
pp. 288-296.

For significance test procedure, see Cooley, W. W. and Lohnes , P. R.

,

Multivariate Procedures for the Behavioral Sciences, New York,
Wiley, 1962, p. 37-

CORRELATION

I. General Description

The main purpose of the CORRELATION program is the calculation of
Pearson product-moment correlations (hereafter referred to as correlations
in this writeup) . A correlation measures the linear dependency between
two variables, and this program calculates a correlation for each pair
of input variables. The square of a correlation, sometimes called the
coefficient of determination, represents the proportional reduction in

variance of one variable due to a linear relationship with another. Thus
the coefficient of determination measures the strength of a linear relation-
ship, or the proportion of variance accounted for by a linear rule.

The CORRELATION program automatically produces other types of
correlation coefficients, because the calculations required are identical.
Thus point biserial coefficients of correlation (often preferred to
biserial correlation), phi coefficients (alternative to tetrachoric
coefficients), and Spearman's rank order correlations can be readily
obtained. Thus, if the input consists of dichotomous variables, the
output will contain a mixture of phi's, point biserials, and ordinary
correlations. (A point biserial correlation is a correlation between
a dichotomous variable and a continuous variable). If the input to
the correlation program consists of rank ordered data (ordinal), the
output will be Spearman's rank order correlations. (See Walker and Lev,
Chapter 11 for comparisons and comments on the above mentioned coefficients).

In the process of calculating the correlations, the means and standard

deviations of the individual variables are computed, as are the cross-

products and covariances between variables. After the correlations have

been calculated, they are used to calculate the linear regression coefficient

and corresponding intercept terms needed for predicting each variable from

each other variable.

II. Input

Input to the CORRELATION program consists of a set of independent
observations on two or more variables. The data is considered as a

two-dimensional array (or matrix) of numbers with each column containing
the observations on one variable, and each row consisting of one obser-
vation on each variable. If we use the letter X to represent the matrix
of raw data, we let Xj_j represent the i~kh row (where i = 1, 2, ... N) and

the jth column (where j = 1, 2, . . . M) . In other words, we have N obser-
vations (rows'* and M variables (columns') in our data matrix X.

III. Formulas and Calculations

The following formulas define certain statistics and illustrate their
methods of calculating within the program. The subscript i refers to
observations (or individuals) and runs from 1 to N. The subscripts j and
k refer to variables, and they run from 1 to M.

CORRELATION
Page 2

N
Z X.

.

- i=l 1J
Mean = X . = —=
(of variable j)

W N N N

Z(X -X)(X -X) NZX X -(ZX)(zx ;

1=1 iJ ik k
i=1

ij ik
i=1

x3
i=1

iK

Covariance* = C = ^—3- =
n(n - l)

(between variables

j and k)

N _
2

/ N N
Z (X. . -X.) /W ZX7. - (ZX. .)

- 1=1 1J J
/ i=l

13 1=1 1D
/

Standard Deviation* = S. = v / —

=

=J r-y———

r

= v C . .

if . , -, .\ 3
s
* W-l ^ W(N-1 jj(of variable J

)

Correlation = R.,
Ok S .S

W WW
w zx. .x.. - (zx. .)(zx..

;C. . , ij lk \ , ij
v

. , ik'
jk i=l i=l i=l

2
(between variables J

j k /~N
?

W
p

/~~
IT W

J and k) / W ZX - (ZX) / W ZX - (ZX)

\/ i=l 1J i=l la V i=l
lk

i=l
lk

From the equation X. . = B..X., + A., , the program calculates
ij jk ik jk

S.

Linear Regression Coefficient = B., = R., (—
-)

(for predicting variable j from variable k) k

Intercept = A = X. - B. X
(constant term in equation for ''

predicting variable j from variable k)

*NOTE : the sample covariances and sample standard deviations are unbiased
estimates of the corresponding population parameters. The definitions
given here follow the practice of many current statisticians. [See Anderson
(1958) - Chapter 3 for example.]

Significance Tests

If we assume that two variables (indexed by j and k) have a bivariate
normal distribution, there is a test statistic for testing the hypothesis
:' the correlation in the population is zero (or equivalently that either

regression coefficient is zero). Even for a relatively small sample size
(n), this hypothesis can be tested using the t ratio:

R., -s/w- 2

t = J*-
4 2
1 - R

.,Jk

CORRELATION
Page 3

with N - 2 degrees of freedom. Other types of hypotheses can be tested

through use of the Fisher R to Z transformation. [See Hays (1963), pages

529 - 533 for example.

]

V. Output

Output from the CORRELATION program may consist of any or all of

the statistics from section III above, by using parameters 2 through 7.

Any output from this program may be printed and/or output to temporary

storage (SEQUENTIAL 1-5). The means, standard deviations, and the sample

size (N) are output as a matrix with M rows (one for each variable) and

three columns (the third column will have a constant value of N for all

variables) . Correlations, covariances, and cross-products are printed

as lower triangular matrices, while the regression coefficients and

intercepts are printed as square matrices. However, all five of these

matrices are stored as square matrices.

VI. Restrictions

The CORRELATION program will accept an unlimited number of

observations, but the number of variables is limited as noted in the

section on PROGRAM LIMITS in the INTRODUCTION.

VII. Parameters

The parameters for the CORRELATION program follow the program

name on the main program card. Each parameter must be enclosed in

parentheses. The parameters must appear in the order given below.

If a parameter is not needed, do not punch anything between its

parentheses. All parentheses after the last non-empty pair may be

omitted.

Parameter
Number

5

6

Use or Meaning

Input Address of raw data (X matrix).

CARDS or SEQUENTIAL 1-15 and/or PRINT.

Output Address for means, standard

deviations, and sample size.

SEQUENTIAL 1-15 and/or PRINT.

ti Output Address for correlation matrix

(R). SEQUENTIAL 1-15 and/or PRINT.

.0 Output Address for cross-products
matrix. SEQUENTIAL 1-15 and/or PRINT.

n Output Address for covariance matrix (c).

SEQUENTIAL 1-15 and/or PRINT.

Q Output Address for matrix of regression
coefficients (B) . SEQUENTIAL 1-15 and/or

PRINT.

CORRELATION
Page h

7

8

fi Output Address for intercepts (matrix A)

SEQUENTIAL 1-5 and/or PRINT.

1 if last variable in each row is a

weighting factor.

It is possible to print in F format and/or punch the output from these

parameters. If you need either of these options, see the section in

the INTRODUCTION on INPUT and OUTPUT.

VIII. Special Comments

1. This program does not check for missing data. All blank spaces
are read as zeroes. If you have missing data, use the MISSING
DATA CORRELATION program.

2. In the output matrices of regression coefficients and intercepts,
the row number refers to the dependent variables, and the column
numbers refer to the independent variables.

3. If a variable is constant, an error message will be printed and
all correlations with that variable will be set to zero.

h. In order to have the program perform its calculations separately
for sub samples of the data, see the section on CONTROL VARIABLES
in the INTRODUCTION.

IX. Examples

1A

/*TD <accounting information>

// EXEC SOUP

//SOUP.SYSIN DD *

CORRELATIONS (CARDS 1 () (PRINT

^

END SOUPAC

DATA (6) (6F2.0)

IB

/*ID <accounting information>

// EXEC SOUP

//SYSIN DD *

COR (C)()(P).

ENDS

DATA (6H6F2.0)

END#

/*

END#

Example 1A illustrates the usage of the CORRELATION program. Notice
that all words are spelled out although this is unnecessary. Notice also
that correlations are to be printed out, although the means and standard
deviations are not. Example IB will perform exactly the same computations
as 1A, except that all instructions have been abbreviated to make keypunching
easier.

CORRELATION
Page 5

2

/*ID <accounting information>

// EXEC SOUP

//SYSIN DD *

cor (cHp)(p/si).

principal axis from (si) to (s2/p) with (10) factors and

(100) percent of the variance to be removed,

varimax rotation from (s2) to (print).

ENDS

DATA (20)(lOF4.0, 5F6.2/10X, 5F^.l)

END#

/*

In the second example, the CORRELATION program first prints the means
and standard deviations. Then it prints the CORRELATION matrix and stores
it on SEQUENTIAL 1 (Si) . The PRINCIPAL AXIS program then performs a
principal components analysis and outputs 10 components to S2. VARIMAX
then rotates these 10 components, using the VARIMAX criterion, and prints
the results.

X. References

T. W. Anderson, An Introduction to Multivariate Statistical Analysis ;

John Wiley and Sons, Inc. , 1958.

E. C Bryant, Statistical Analysis ; McGraw-Hill, i960, pp. 113-135-

W. L. Hays, Statistics for Psychologists; Holt, Rinehart and Winston,
i960.

H. M. Walker and J. Lev, Statistical Inference ; Henry Holt and Company
New York, i960.

MISSING DATA CORRELATION

General Description

The MISSING DATA CORRELATION program calculates the following coeffi-

cients for every combination of variables:

Mean: X± = —
n. z(x2

id) - (rx^) 2
1/2

Standard Deviation : s . . = [

—

]" Ntj (Nirl)

.
n^eCxy^) - (ffl

13
)(g

13)

Covariance : S. . =

S.

N,. (N..-1)

Correlation : r
" Sx. .Sy.

.

II. Restrictions

The maximum number of variables for this program is 100.

The input data to this program may come from any source conforming to

SOUPAC. Output may be printed and the correlation matrix may be placed on

any source conforming to SOUPAC.

III. Parameters

The parameters for the MISSING DATA CORRELATION program appear on the

program card. They must follow the program name in the following order:

Parameter
Number Use or Meaning

1 Input Address. CARDS or SEQUENTIAL 1-15-

Default is CARDS.

2 - printing as usual
1 - printing is suppressed

3 Output Address of correlation matrix.

h Output Address for sample sizes.

5 Coding for missing data; if left blank or if
zero is entered, minus zero is used as check.
It is NOT possible for this program to count
true zeroes as missing data. This parameter
must be enclosed in asterisks. Example: *99*«

NOTE: All output is in double precision.

MISSING DATA CORRELATION

Page 2

IV. Special Comments

A. The user is warned against further processing of the correlations
output by this program because the correlations do not necessarily
come from the same sample.

B. For control breaks, data must be presorted on the control variables
with the last variable changing fastest. The maximum number of control
variables is 30 Control variables begin on a new card with $C-B in column

1 and are enclosed in parentheses.

C . The correlation matrices can be stored in parameter 3 is a temporary
storage address. However, if control breaks are also being used,

only the first matrix corresponding to the first control break can be

saved

.

PARTIAL CORRELATION

I . General Description

This routine, upon option, provides two of the more common types of

special purpose correlation coefficients.

A. Partial Correlations:

This program produces coefficients of net correlation of any order

froin 1 to 19 in matrix form. Coefficients of successively higher

order may be obtained by repeated calls to the program, each time

using as input the previously generated partial correlation matrix;

or several variables may be held constant at the same time by one

call to the program.

The general equation used is:

ij .abc. .
.
(n-1) in.abd. .

. (n-l) i j <.abc. .
.
(n-l)

ij .abc . . .n
(1 " r2 - UA t ,0

1/2
(1 - r. ,

in.abd. . . (n-l) ;jn.abc ...(n-l) }

eferences

:

Mills, F.C. Statistical Methods, Holt, Rinehart and Winston.

New York, 1955, 3rd edition.

Tetrachoric Correlations

:

This type of correlation coefficient is used when continuous normally
distributed variables are measured dichotomously.

This program is based on a program by Roald Buhler at Princeton
University which in turn is based on a 650 program written at the

Educational Testing Service. The approximation used was developed
by Professor Ledyard Tucker.

II. Restrictions

Partial Correlations

:

Input matrices may be no larger than lUO x lUO and must be compatible
with SOUPAC conventions. In most cases the original input to the

program will be a matrix of zero order correlations (see CORRELATION
program write-up)

.

Tetrachoric Correlations

:

This option is limited to 1^0 variables. All observations should be

coded either or 1. The program generates cross-count tables before
computing the correlation coefficients.

PARTIAL CORRELATION
Page 2

III. Parameters

The program name, PARTIAL CORRELATION, should be followed by the

following parameters

:

Parameter
Number

2

3

22

Use or Meaning

Input address of R if partial correlations or raw
data if tetrachoric correlations. (R is a

correlation matrix)

.

Output Address of correlations desired.

if tetrachoric correlations are desired

1 if partial correlations are desired

Variables to be held constant in using
partial correlations.

IV. Special Comments

When there is a zero cell or sufficiently close so that the

tetrachoric correlation cannot be computed by this approximation, a

value of -1.0 is used if the missing cell is off-diagonal. If a

diagonal cell is zeroish (i.e., if a variable is all zero or all one)

its correlations are set to 0.0.

Blanks are counted as zeroes.

Examples

A series of observations of 8 variables are used to obtain 3rd
order partial correlations with variables 5, 7> and 8 held constant:

/'LID

// EXEC SOUPAC
SYSIN DD *

RRELATIONS (CARDS) () (SEQ 1) .

RTIAL CORRELATION (SEQl) (PRINTUl) (5) (7) (S"1
•

... SOUPAC
DATA(8)(8F6.2)

F.ND -//

/*

STEP-WISE MULTIPLE CORRELATION

I. General Description

The STEP-WISE MULTIPLE CORRELATION program calculates the following:

- *i
Mean : X n

-

1 ~ N

Covariance : s.

NE(X.X.) - (2C.)(flC.)

ij
:

N(N-l)

1/2
Standard Deviation: s. = (s..) '

l li

Product Moment Correlation : r

.

s. .

ij s. s .

i J

In the step-wise procedure, intermediate results are used to give
valuable statistical information at each step in the calculation. These
intermediate answers are also used to control the method of calculation.
A number of intermediate regression equations are obtained by adding one
variable at a time thus giving the following intermediate equations.

a. Y = B
Q

+ B1 X1

b. Y = B + B1 X1 + B2 X2 , etc.

The coefficients for each of these intermediate equations and the
reliability of each coefficient are obtained by the step-wise procedure.
The values and reliability may vary with each subsequent equation. The
coefficients represent the best values when the equation is fitted by the
variables included in the equation. The variable is added that makes the
greatest improvement in "goodness of fit" or, stated another way, gives the
greatest reduction in variance of the dependent variable.

A variable may be indicated to be significant at an early stage and
enter the regression equation. After several other variables are added to
the regression equation, a variable in the equation may be indicated to be
insignificant. Under this situation the step-wise regression procedure will
remove the insignificant variable before adding an additional variable.
Thus, at the various steps in the regression procedure, only those variables
which are significant will be included in the regression equation.

The F level to enter a variable controls when variables enter the
equation and the F level to remove a variable likewise controls the removing
of variables from the equation.

The last step in the step-wise procedure predicts the value of the
dependent variable for each set of observations based on the final re-
gression equation. Deviation between the actual and predicted values are
also calculated.

(See parameter k)

.

STEP-WISE MULTIPLE CORRELATION
Page 2

For reference to formulas ard methods used see:

A. Ralston and H. S. Wilf, Mathematical Methods for Digital
Computers , New York, Wiley and Sons, i960, pp. 191-195

•

II . Restrictions

The maximum number of independent variables in this program is 199-
The dependent variable must be the last variable of each row.

The input data to this program may come from any source conforming to

SOUPAC. Output may be PRINT only.

Ill . Parameters

The parameters for the STEP-WISE MULTIPLE CORRELATION program appear
on the program call card. They must follow the program name in this order:

Parameter
Number Use or Meaning

1 Input Address. CARDS or SEQUENTIAL 1-15-

(See parameter h for special conditions).

2 "F" level to enter an independent variable
into the regression equation. An example
would be: *i+.0*

3 "F" level to remove a variable from the
regression equation. An example would
be: *U.O *

h This parameter should be set to 1 if the

predicted dependent variables are to be

calculated. (if this option is needed,
input data must not be from cards

.
) or

blank if not wanted.

5 1 if constant term in equation is assumed
to equal zero (0)

.

6 1 if want to use weighting factor. (if a

weighting factor is used, it must be the
last variable in the input data row.

)

7 1 if intermediate steps of regression are
not to be printed.

8 1 if do not want cross-product matrix printed
2 if input data is in the following form:

1 N N+l

CORRELATION
MATRIX

N

STANDARD

N+1 DEVIATION

(where N is the number of variables)

M
E

A
N
S

sample
size

Parameter
Number

9

10

11

12

STEP-WISE MULTIPLE CORRELATION
Page 3

Use or Meaning

1 if do not want means and standard deviation
printed

1 if do not want covariance to be printed

1 if do not want correlations to be printed.

Tolerance to be used to determine when
singularities are assumed to occur. If

this parameter is left blank 10~5 is used.

If it is desired to change this parameter,

the following would be used: *1.E -10*

where any number could be substituted for

the 10.

Output (intermediate storage^ of coefficients.

First (N) variables are placed in regression
first.

13

11+

IV. Special Comments

The dependent variable must be the last variable in the input row
(unless a weighting factor is used, then the dependent variable will be the

next to the last variable in the input row)

.

Negative F-ratios may sometimes result in the computational procedure.

They should be considered to be analytically zero. Frequently negative

F's arise when input is a missing data correlation matrix. Results up to

the negative F are always correct.

The standard error of Y

predicted Y.

;iven at each step is the standard error of

The program will loop if a variable entered at one step is removed

at the very next step. This can usually be corrected by changing the

F-levels to enter and remove variables.

V. Example

STEP (CARDS)*k.**h.*{)()()()(1).

DISTRIBUTION ANALYSIS PACKAGE

FIT
(CHI-SQUARE GOODNESS-OF-FIT TEST

>

I. General Description

In statistical applications, it is frequently the case that certain

assumptions were made concerning the probability distribution of a random

variable. A frequent assumption is that a particular variable is normally

distributed. The question that arises is "how valid an assumption was

this?" A method of testing this assumption (or hypothesis) is the CHI-

SQUARE GOODNESS-OF-FIT TEST.

This program provides tests of hypothesis that user's data is

(l) a random sample from the distribution PO, where is a user specified

parameter, or (2) a random sample from a class, PO, of distributions where

is not specified. These will be called tests of type 1 and type 2 ,

respectively.

Distributions which can currently be tested in the program are the

binomial, Poisson, normal, gamma and continuous rectangular distributions.

The user may, for example, wish to test the hypothesis that his data was

from a normal distribution with variance 1, for some mean.

The program on the basis of the user provided information decides on

a set of points X, < X„ <X in the range of the distribution under12 n

consideration. The test then compares the observed numbers, o^ ,of

observations in each interval [X. n , X.), with the expected numbers
l-l l

e. = Ps '{X. . : I. X.} , {Y. ; 1 < i < m }
l 1-1—1—1 l — —

Where is the user specified value of , if it was specified, and if

not, is the maximum likelihood estimator for a hypothesis of form (2)

above. The comparison of o. with e. is made by the statistic

n+1 (o - e)

2

X = Z

1-1
S
i

2
The distribution of this statistic has an approximate X distribution when
the hypothesis is true and n is large. (See Billingsley , 1961).
The program prints the computed value of X and the number of degrees of

freedom for the test.

If one sample, with m observations, is to be tested, input to the program
from cards or sequential will be one variable with m observations. More
than one sample may be tested at a time, if the same distribution, or in some

cases a distribution from the same class, is the one being considered. Thus

a test of each of three samples, all of which are on the same sequential
storage or card deck, may be performed.

FIT (CHI SQUARE
GOODNESS OF FIT

^

Page 2

II. Distributions Available

NOTATION: In the description below f(x) denotes the value of the probability-

density function of the point x. F(x) is the cumulative distribution function
defined as Pr {X < x }

DISCREET DISTRIBUTIONS

The Distributions are classified here as being "discreet," (i.e.

having positive probability at a countable number of values of the
random variable it describes) or as "Continuous" (having positive
density over a continuous range of values of the random variable).

1. BINOMIAL(N,P) N a positive integer; <_ p <_ 1

f(x) --

(
jp (1-p) for x an integer

Vx/
such that < x < N

F(x) = E g) p
1

(1-p

i=0

N-i for x an integer
such that < x < N

This distribution is appropriate, for example, in situations

where a random variable is sampled independently (observed) N times,
the observations, and where the values of the random variable can

be classified precisely as being in one of two sets often denoted
"success," and "failure," with probabilities p, and q = 1 - p
respectively.

2. POISSON (X) X>0

/ \ x —X
f(x) = X e x >_ ; and x an integer

x!

x i -X

F(x) = I
A

.? x >

i =

The Poisson distribution is often used as an approximation
to the binomial when the number of observations is large,

p = Pr {success} is small, and the product n * p is essentially a

constant. The Poisson is a pervasive distribution in its own

right, arising in situations where the probability of no occurrences,
or of one occurrence of a phenomenon in a unit of time is moderate,
where the probability of more than one occurrence is essentially
negligible in comparison, and where the frequencies of occurrence in

adjacent intervals are independent of each other.

FIT (CHI SQUARE
GOODNESS OF FIT 1

Page 3

B. CONTINUOUS DISTRIBUTIONS

2 2

1. NORMAL (\i, a) -« < u < +«> ;a >0

1
2

f(x) = I 2 eXP
~2 M _oo < X < +oo

211 a 2 a

dt -°° < x < +°°

Through the Central Limit Theorem, the use of this distribution
has been justified to describe a tremendous variety of phenomena in

which the random variable under consideration is assumed to be the
sum of a large number of independent random variables , each having
a small contribution to the total.

2. GAMMA (a, 6) a>0 , 3 >

f(x)
„a a-1 -0x
3 x e

A(a)

x
.

F(x)
(a .a-1 -3t ,.

3 t e dt

/ A(a)

Here A(a) = (a-1) A (a-1)
integer, A(a) = (a-1)!

for x >

and so if a is a non-negative

The gamma distribution is the sampling distribution for the

sum of a independent identically distributed "negative exponential"
random variables, with 3 =A where X is the parameter for the
negative exponential distribution. The negative exponential
distribution is itself the special case gamma (1,3). The gamma distri-

bution is used in dealing with waiting times, where the expected
frequency in a given interval has Poisson distribution. The
"Chi-Square" distribution is another important special case of the
gamma distribution where

2
X (r) e gamma (r/2, 1/2).

3. RECTANGULAR (0^ ©
2) Q

i
" G

2

1

(e
2
- Oj)

f <*> = (* - a.<> 1 ix 1 9 2

x x-0,

F(x) = / 1 dt = H_ Q
l

-

4 Q2- Q
1 V 1

FIT (CHI SQUAEE
GOODNESS OF FI1

^

Page k

This distribution is appropriate where any event in an

interval {0j , 2 } has equal probability of occurring, but no

occurrences will be outside the interval.

III. Use of the Program

A. PRELIMINARY

The program is invoked by the main parameter card (a SOUPAC
"Program Card"). Information concerning the distribution and
intervals to be used are supplied on subparameter cards for the

program.

Input is in the form of column vectors, and may be from cards or

sequential storage. Each variable (vector of data will be tested
against the same type of distribution, i.e. information provided
on the distribution card applies to all variables.

The subparameter card provides the means of supplying information
to the program concerning the distribution to be used, as well as

the number and size of intervals to be used in the tests. In

some cases a distribution parameter must be supplied by the user.

B. MAIN PARAMETER CARD

Immediately following the program name CHI-SQUARE GOODNESS-OF-FIT
(mnemonic: FIT), the following parameters are listed.

Parameter
Number Use of Meaning

Input Address. May be CARDS or

SEQUENTIAL (SI, or S2, etc).

SUBPARAMETER CARDS

1. GENERAL DESCRIPTION

One "distribution card',' chosen from the list below,
should appear with each call to the program. For tests of

type 1 ("simple hypothesis") the parameters of the distribution
are specified on this card. For distributions allowing tests
of type 2 ("composite hypothesis") one or more of these

parameters may be left blank. Other parameters on the card

relate to intervals to be used for determining observed and

expected frequencies. Because this test is "asymptotically
valid," these should be chosen so that expected frequencies of
any interval does not fall below 5-

2. DISTRIBUTION CARDS

Where * * is used, a parameter requires a decimal point

number; when () appears an integer is required.

FIT (CHI SQUARE
GOODNESS OF FIT ^

Page 5

DISTRIBUTION

BINOMIAL(M)*P*(N).

M and P are parameters of the distribution, P the probability
of success on a trial, M the number of trials. N is the number

of points (integral values starting at 0) to be grouped in each

interval. For a test of Type 2, the parameter P should be

left blank.

POISSON*A*(ENDPOINT)(N).

X is the Poisson density parameter, and may be left blank for

a test of type 2. N is the number of adjacent points to be

grouped in each interval until ENDPOINT is reached. The

Interval [ENDPOINT, +°°) is then the last interval.

RECTANGULAR*Q1**Q2*(N)

.

01, and 02 are the endpoints for the range of the distribution
01 < 02. N is the number of equal sized intervals to use for

the test. Only tests of type 1 are allowed with this distribution.

2

N0RMAL*y**a **STPT**EP*(N)

.

P is the mean of the distribution, a" is the variance. Either

or both of the parameters may be left blank for a test of

type 2. STPT and ZP are the start point and end point of an

interval to be broken up into N equal sized intervals for

the test. The additional intervals (-°°, STPT), and [EP, +°°
)

will be used.

GAMMA*a**3**ENDP0INT*(N)

.

a is the degree's of freedom parameter, and must be specified.
6 is the density parameter and may either be specified for
a type 1 test or left out for a type 2 test. The portion of the
real line between and ENDPOINT will be divided into N equal sized
intervals for the test. One additional interval, [ENDPT, +°°

)

will be included.

IV. Restrictions

A maximum of 50 input variables (each variable a sample to be tested)
may be input to the program. Only one distribution or distribution type
(e.g. NORMAL with variance 1 and any mean) may be tested.

FIT (CHI SQUARE
GOODNESS OF FITO

Page 6

V. Examples

/*ID

// EXEC SOUP
//SYSIN DD *

FIT(CARDS).
N0R*2 . 0****-10**lU*(2>!

i

END P

END S

DATA(1000,1)(21X,Fl+.l)

#END
/*

This program will test the hypothesis that the sample is from a normal
distribution with a mean of 2, for some variance. The interval [-10, lU)

will be divided into 2U pieces, each of length 1, for the test.

/•ID

// EXEC SOUP
//SYSIN DD *

FIT (CARDS).
BIN(l0)*l/2*(2).
END P

END S

DATA(600,l)(26X,F2.0)

#END
/*

This program will test the simple (type l) hypothesis that the sample was

from a B (10, 1/2) population. Note that with the given number (600) of
observations we had to group adjacent pairs of points into the same interval
to insure a reasonable expected frequency in every cell.

THE KOLMOGOROV-SMIKNOV STATISTIC

I. General Description

The program computes the Kolmogorov-Smirnov (K-S) D statistic,

D =
SUP

all x
FN (x) - F(x)

where F^ is the sample cumulative distribution for a sample of size N and

F(x) is the specified cumulative distribution.

IT. Theoretical Discussion

The sample distribution function:

Vx) =| 3 = °> N

will generally differ from the population distribution function. If
the sample distribution differs exceedingly from the specified
distribution F(x), the amount of the difference might be of use in
determining whether to accept the hypothesized distribution as correct.
The Kolmogorov-Smirnov test uses the maximum actual numerical
difference If^OO - F(x) I .

Example :

Consider testing the hypothesis that a distribution is normal with
mean = 32 and variance=3.2U with 10 sample observations

31.0 33-7
31. h 3^.U
33.3 3^.9
33.^ 36.2
33.5 37-0

F (x) and F(x) are sketched below.

KOLMOGOROV-SMIRNOV
Page 2

F
N
(x) - F(x)D = .5b which is the maximum of

At the .95 confidence level the critical value D' = . U0925

Since D > D' the distribution being tested is rejected at the 3% level.

* See Owen [5]

III. Notes

Only supply the parameters needed to determine a specified
distribution. This program, at this time, calculates Kolmogorov-
Smirnov statistic for the following distributions if given the
proper parameters.

A. Normal
1. mean
2. variance

B. Chi-Square
1. Degrees of freedom

C. Central F
1. Degrees of freedom numerator
2. Degrees of freedom denominator

D. Noncentral F
1. Degrees of freedom numerator
2. Degrees of freedom denominator
3- noncentrality parameter N

when noncentrality parameter X = — £ w

i=l

(See Graybill [3] for further development of \).

Additional distributions are planned for the near future. Please
see consultants for these additions.

IV. Sample Programs

A. Normal - type 1

2 = 32

a = 3. 2k

K-S (C)(1)
'-'

: 2^.2k*.

B. Chi-Square - type 2

d.f.= 2k

K-S(C) (2)****(2k).

C. Central F - type 3

d.f. numerator = 5

d.f. denominator = 16

K-s(si)(3)****(5)(-l6).

KOLMOGOROV-SMIRNOV
Page 3

D. Noncentral F - type 3

d.f. numerator = 10

d.f. denominator = 13
noncentrality parameter (X) = 2.5

K-S(S2) (3)*-*** (10) (13)*2.5*.

V. Parameters

The following parameters follow the mnemonic K-S

:

Parameter
Number Use or Meaning

1 Input address, CARDS, SEQUENTIAL 1-15.

2 Specified distribution (see Section IV)

.

3 Floating point value of the mean.

k Floating point value of the variance.

5 Degrees of Freedom (numerator)

.

6 Degrees of Freedom (denominator)

.

7 Floating point value of non-centrality
parameter.

VI. References

[l] Darling, D. A., "The Kolmogorov-Smirnov, Cramer-Von Mises Tests,"
Annals of Mathematical Statistics , Vol. 28, (1957), PP- 823-838.

[2] Goodnight, James, Department of Experimental Statistics, N. C.

State University, Raleigh , North Carolina. Mr. Goodnight
developed and programmed the computational procedure used to
integrate the central and non- central F distribution.

[3] Graybill, F. A., An Introduction to Linear Statistical Models
,

Vol. I, Chapter k, "Distribution of Quadratic forms" pp7 7^f— 92.

[U] Lindgren*

[5] Cwen, D. B., Handbook of Statistical Tables . This book contains
a table of the critical values for the Kolmogorov-Smirnov
statistic. It is available for reference in the SOUPAC office.

FACTOR ANALYSIS PACKAGE

Factor Analysis Package

Users of the PRINCIPAL AXIS FACTOR ANALYSIS program are reminded that

if no estimates of communalities are provided with the input matrix, the

output is a principal components matrix. If communalities are provided,

then the output is principal axis factors. Whether communality estimates

are used, and if so, what kind, can be a very important conceptual considera-

tion. Mathematically, the principal components approach the principal axis

factors for large numbers of variables. The rate of convergence is the ratio

of N
2

to N
3

.

Centroid factor analysis similarly requires that a user consider the

question of communality estimates.

The ITERATIVE FACTOR ANALYSIS program on the other hand, simultaneously

estimates communalities and factor loadings.

The UNRESTRICTED MAXIMUM LIKELIHOOD procedure requires as input a

correlation matrix with unities on the diagonal.

For principal components, component scores are derived by the equation

ZR F = X where Z is the standardized raw scores; R the inverse of the

correlation matrix; and F the component loadings.

In general, factor scores from oblique rotations are obtained by the

formula X = DY~" M~ F'Z where D is the correlation between components and

the reference vectors; Y the reference vector transformation; M the roots;

F the principal components; and Z the standardized raw scores. For the

orthogonal case, the general formula is X = TM F'Z where T is a transforma-

tion matrix, for example, the varimax loadings. Notice that if T is the

identity matrix we have the formula for component scores.

These general formulas are also applicable to principal axis factors,

as well.

BINORMAMIN

I. General Description

BINORMAMIN ROTATION rotates a matrix, F, of orthogonal factor loadings
to oblique simple structure.

It does this by iterating for T in FT = A (where A is the rotated factor
pattern ^ so as to minimize:

Z
(v

2
/h

2
)(v

2
/h

2
)

K "P KP"P q=P
(^v

2
/h

2)(^2
/h

2
)

J

3 jp 3 3 jq' 3

Since solving directly for K is too complex, BINORMAMIN takes one vector at

a time, rotating it against all the others, to minimize each Kp.

Its name comes from the fact that is uses a double (Bl) NORMAlization
in seeking a MINimum.

For further information see

:

1. Kaiser, H. F. and Dickman, K. W., "Analytic Determination of
Common Factors". Unpublished manuscript, University of
Illinois, 1959-

2. Harmon, H. H., Modern Factor Analysis . Chicago, University
of Chicago Press, i960. pp.326ff.

II. Restrictions

Input is limited to matrices of 150 x 30 or less.

n. Parameters

After the program name, BINORMAMIN, are the following parameters:

Parameter
Number Use or Meaning

1 Input Address of factor matrix, F.

2 Output Address of factor matrix, F.

3 Output Address of the transformation
matrix, T.

h Output Address of the reference vector
structure, V.

Output Address of the correlations between
reference vectors.

Output Address of the primary factor
pattern, P.

BINORMAMIN
Page 2

Parameter
Number

7

8

10

11

Note on Output

:

Note on parameters 8 and 9
meets first.

Use or Meaning

Output Address of the correlations between
factors.

Maximum number of iterations (see note). If
blank, the maximum will be set at 100 itera-
tions .

Convergence criterion (see note).

A. Defined zero change: iterating will stop
when each element in V changes by less
than A. (A must be less than .2 and no
less than .0000001).

B. Defined zero rotation: iterating will
stop when each vector in T changes by-

less than 9, where is the angle whose
cosine is B. (B must be less than 1.0
and no less than .2).

If left blank, A will be set to .001.

If an initial T is to be read in, input
address of T.

Output Address of the initial T.

A. Any output option left blank will not be output.

B. The program will always print out the program
name and the number of iterations actually done

.

C. The program will print out the largest change in

V, unless option 9B is used.

D. All data printed out is to 7 decimal places.

Program will stop at whichever criterion it

Note on parameter 9: This parameter is a floating point constant and there-
fore must be enclosed in asterisks, with a decimal point, as in example:

Example: BINORMAMIN (CARDS) (U) (SEQ 1 /PRINTK)()(PRINT) (
)*.0001*.

Store V on SEQ 1, also prints V and correlations between factors. On the last
iteration, no element in V changed by more than .0001, unless the maximum of
100 iterations was reached.

CENTROID I ACTOR ANALYSIS

I . General Description

CENTROID FACTOR ANALYSIS computes a set of f linearly independent
vectors (factors'1 which are mutually uncorrelated. Normally, a factor
analysis decomposes a matrix of correlations, R , into a set of f
factors. The factors are arrayed as column vectors in the factor matrix,
F, such that

^ = FF '
+ R

(n-f)

thwhere Rn_f is the matrix of residual effects. The K factor is computed
by dividing the column sums of R , by the square root of the total sum of
elements of Rn _i.

<hV Jxz r, ,
(k:

fi k = Z r v ' /11, k l r / - rr '1,3
13

Between each factor extraction, the variables in the residual matrix
are successively reflected until all the column sums are positive.

For more detailed discussion see:

1. L. L. Thurstone, Multiple Factor Analysis , Chicago,
University of Chicago Press, 19^7, pp. 1^9-175-

2. Harry Harmon, Modern Factor Analysis , Chicago,
University of Chicago Press, i960, pp. 192-215-

II . Restrictions

The input matrix for the CENTROID program must not exceed the dimen-
sions of 190 x 190. The input matrix is further limited to being a square,
positive definite or semi-definite, symmetric matrix. Commonly, correlation,
covariance, or cross-product matrices are used as input data. Any attempt
to introduce communality estimates (change the diagonal elements) must be
made before data is passed to the CENTROID program. A set of communalities,
which are incorrectly estimated, can make the matrix non-positive and could
conceivably cause a hang-up.

The input data may come from any storage medium which conforms to SOUPAC.
Similarly, the output codes follow the established conventions and are at
the option of the user.

The input matrix may be completely factored (i.e., N factors from a
N variable matrix") . However, factoring may be stopped by any of three
criteria:

1. The user may specify the number of factors to be extracted.
This criterion provides an upper limit beyond which factoring
will not be done. Consequently, it is advisable to put the
maximum value on this limit in cases where it is not the
primary criterion. (Set it equal to the number of variables).

CENTROID
Page 2

2. The per cent of total variance removed from the R matrix is

a second limiting criterion. This parameter also specifies

an upper limit to the process. Therefore, it should be set

at 100 per cent unless it is the criterion for stopping.

3. The last criterion is to stop when the factor contribution falls

below 1. The use of this procedure is dictated by the presence

or absence of its associated parameter.

If all three criteria are used simultaneoulsy, factoring will be stopped by

whatever criterion is met first.

III. Parameters

Following the program anme on the program call card come the parameters

needed by the program. The parameters must appear in the order below:

Parameter
Number Use or Meaning

1 Input Address. CARDS or SEQUENTIAL 1-15-

2 Output Address. SEQUENTIAL 1-15 and/or PRINT.

3 Maximum number of factors to be extracted

.

This must be less than or equal to the

order of the input matrix.

k Per cent of total variance to be removed

expressed as an integer between and 100.

5 The presence of any number greater than
in this parameter indicates that factoring

should stop when the factor contribution
falls below unity.

6 Output Address of Residual Matrix.

If parameters 3 and k are left blank then by default option they will be .

set to maximum possible values and a message will be printed.

Residual Matrix must be stored before it can be printed.

Example: Assume that you have 77 variables and that the correlation matrix

is stored on SEQ 1 , then legal forms of CENTROID call statement may be:

CENTR0ID(SEQ l) (PRINT) (77) (100) (l)

.

CENTROID (SEQ 1)(P(F))(50)(80).
CENTROID (SEQ l)(SEQ 2/P) (20) (100) (l) (SEQ 3/P)

.

CENTROID (SEQ l)(SEQ 2/P(F) H±5) (90) (SEQ 3/P(F))

.

CENTROID (SEQ l) (P) . In this case, number of factors = 77

and per cent of variance = 100 will be assumed by default.

COMMUNALITiT ESTIMATION

I. General Description

Five methods of COMMUNALITY ESTIMATION are offered in this program.

In each case the estimates replace the diagonal elements of the matrix.

They are as follows

:

Code Number Method

1 The element of largest absolute magnitude in

each row replaces the diagonal element of the

row.

2 The square of the multiple R of each variable
with all others replaces the diagonal entry
for that variable. (See Special Comment Number 2)

3 Communalities produced from another analysis
and are to be input from cards or another
storage medium.

N
2 l/2

k For each row (N) ((z r
±
^)/N) 7

"

replace the diagonal entry for that row.

This is the square root of the average
square across the row.

5 For each row (Nj (r*.)^ - r*^/^ - r*^

replaces the diagonal entry for that row

where

:

r* = max ab s (r . .) and
lk ij

S. = Z abs (r. .), S = Z abs (r. .)

J J

This method of COMMONALITY ESTIMATION is due to

Professor L. Tucker.

II. Restrictions

Input is restricted to correlation matrices of order 150 or less.

TTT. Parameters

The parameters for the COMMUNALITY ESTIMATION program appear on the

program call card. They must follow the program name in this order:

Parameter
Number Use or Meaning

1 Input Address. CARDS or SEQUENTIAL 1-15-

IV.

Parameter
Number

2

3

k

Special Comments

COMMONALITY ESTIMATION
Page 2

Use or Meaning

Output Address. SEQUENTIAL 1-15 and/or PRINT.

Section Code Number. (See General Description
'

Input Address if Option 3 is used.

(1) If the correlation matrix and communalities both are input from cards,

the correlation matrix precedes the communality estimations. (See Code

Number 3 in the General Description '!
.

(2) If the input correlation matrix is singular, or very nearly so,

squared multiple correlations computed by standard procedures may be subject
to considerable error, and will usually exceed unity for several variables.
For this reason, the user should be aware of the characteristics of the
matrix. The program will check to see that all R are less than or equal
to 1.0. If this is not the case, execution will cease and a message will
be printed stating that the correlation matrix is virtually singular.
There is an alternative procedure devised by Ledyard Tucker for finding
R in singular matrices. Information is available in the SOUPAC office.

V. Reference

Harmon, Harry: Modern Factor Analysis , Chicago, University of Chicago
Press, i960, pp. 83-90.

ITERATIVE FACTOR ANALYSIS

I. General Description

A. Procedural

This routine, upon option, provides one of four iterative factor-
ization methods

:

1. Alpha factor analysis (AFA, Kaiser, 1962)
2. Canonical factor analysis (CFA, Rao, 1955, Harris, 1962)
3- Stepwise maximum likelihood factor analysis (MLFA, Lawley, 19^0)
^4. Iterative principal axis factor solution (IPRAX, Traditional)

All four methods have in common that communalities and factor loadings
are estimated simultaneously. In three cases (AFA, CFA, IPRAX) the

number of factors decision can be made beforehand by the user, or it

can be left to the program, in which case appropriate modifications of
Guttman's lower bound criterion will be used.

The four methods differ from each other in theory with respect to the
defining criterion of optimization, and consequently they differ tech-

nically with respect to the matrix that is diagonalized in each case.

1. AFA (Kaiser)

Optimization criterion : maximize the alpha- reliabilities
(Cronbach) of the retained factors. If the number of factors
decision is left to the program, the Kaiser modification of

the Guttman criterion will be used and all factors with
positive alpha-reliability will be iterated upon.

The diagonalization is on the matrix C in

C = H"
1

(R - U2) H"1 so that C = Q0Q'

o
where R is an nxn input matrix of covariances, H is a diagonal
matrix of communalities, U = I - H^ is a diagonal matrix of
uniquenesses, Q is an nxm matrix of latent vectors corresponding
to the m largest latent roots in Q which are used to recompute
new estimates of H2 through F = H Q 0V2

. An initial set of H2

is provided by I - (diag(R"-'-))"-'- which is equivalent to the

squared multiple correlations of R if R itself is a correlation
matrix.

Invariance under scaling : Kaiser has shown that the resulting
factors will be invariant under scaling, i.e., if a covariance
matrix R gives rise to a factor matrix F then the covariance matrix
SRS will give rise to a factor matrix SF (S diagonal).

Behavior of latent roots, alpah reliabilities : the n-m rejected
roots of C add to zero at each state (i.e., C is non-Gramian),
the m accepted roots are simple functions of the alpha-reliabilities
of the retained factors in F. These reliabilities will be output

by this sub -program.

ITERATIVE FACTOR ANALYSIS
Page 2

2. CFA (Rao, Harris)

Optimization criterion : maximize the correlations between m
linear combination of the common parts of the variables with m
linear factors that are canonically correlated (Hotelling) with
the variables in the common factor space. If the number of
factors decision is left to the program, the Harris modification
of the Guttman criterion will be used, leading to a Gramian
R-U of minimum rank

.

The diagonalization is on the matrix

C = U
-1

(R - U2) IT1 so that C = Q9Q'

where F - UQ.W-V is used to recompute new estimates for U2 ,

retaining the m largest roots of C in 9. The notation is the
same as in section 1 (AFA) . An initial set of U2 is provided by
[diag (R-1)]-1 .

Invariance under scaling : the resulting factors are again invariant
under scaling as defined in section 1 (AFA"1

.

Behavior of latent roots : Chi- square criterion: Rao has shown
that the n-m rejected roots approach unit at convergence. For
exact rank m data they will be "exactly" unity within the tol-
erance of the convergence criterion ETA (see section III - B)

.

For data containing random error their departure, from unity
provides a likelihood ratio test for the hypothesis that the
population matrix P-V2 = GG' , where P, V, G are population
parameters corresponding to R, U, F in the sample, is rank m
or less. A criterion for this test is computed by this sub-
program which can be compared with two chi-square approximations
which are also output by this sub-program. Note that such a

chi-square test is valid only if the iterative process has indeed
converged, as indicated by the maximal discrepancy between trial
vectors which is printed out for that purpose.

3- MLFA (Lawley)

The CFA variant of the program can be used for a step-wise maximum
likelihood factorization in the Lawley-Rao sense.

Optimisation criterion : maximize the likelihood function corre-
sponding to the multivariate normal distribution with covariance
matrix parameters P=GG' + V2 (as defined in section 2, CFA), given
the sample matrix R, under choice of G and V and observing the
side-conditions that P -V^ is Gramian and V diagonal with < Vj_ < 1 .

The diagonali zation is the same as in CFA, section 2, hence, the
resulting factors are again invariant under scaling as defined in
section 1 (AFA)

.

ITERATIVE FACTOR ANALYSIS
Page 3

In contrast to CFA, however, the number of factors decision is

made on statistical ground. The user would start with a reason-

able guess for m (preferably m<n/2 to ensure positive degrees

of freedom for the chi-square test, which otherwise will be by-

passed) . After convergence has been obtained, the user would

insepct the chi-squared statistic. If the statistic is below the

table values of the chosen porbability level (.05 or .01), then

the hypothesis can be accepted at this level with corresponding
risk and the user has the option to reduce m for a second run,

etc. On the other hand, if the adjusted statistic exceeds the

table value, then m must be raised until the adjusted statistic
warrants acceptance of the hypotheses.

Within the package the user is free to re-enter the routine
repeatedly with sequentially de- or increasing m specified on

the call card. Since the test assumes convergence, it is per-

tinent that the number of iterations be allowed large enough
for convergence to occur within the chosen tolerance bound ETA
(see section III - B)

.

k. IPRAX (traditional
1

'

Optimization criterion : none

The diagonalization is on the matirx

2
C = R - U so that C = Q9Q,'

where F = Q01/ 2 is used to recompute H2 = I - U2 , retaining
the m largest roots in 6. The notation is the same as in

section 1 (AFA) . An initial set of H2 is provided by the

identity matrix. If the number of factors decision is left

to the program, the unmodified Guttman criterion will be used,

i.e., all factors corresponding to roots of the input matrix

R which exceed unity will be retained.

Invariance under scaling : as defined in section 1 (AFA) is

not obtained by this method.

The behavior of the latent roots is not known at present. Wo

statistical or other significance can be attached to the m
largest or n-m smallest root of C.

5- Both covariance matrices and correlations matrices are accept-
able as input. If covariances are used the tenth parameter
should be 1. In this case the covariance matrix is scaled into

a correlation matrix, and all computations, in particular the

number of factors decision, are based on this correlation matrix.

At the final stage the factors are scaled back so as to account

for the covariance matrix which was input. The matrix of residuals
is computed in the metric of the covariances.

ITERATIVE FACTOR ANALYSIS
Page k

References

:

Guttman, L. "General Theory and Methods for Matrix Factoring,"
Psychometrika , 1955, IX, 1-16.

Harris, C. L. "Some Rao-Guttman Relationships," Psychometrika ,

1962, xxvii, 2U7-263.

Hotelling, H. "The Relation of The More Multivariate Statistical
Methods to Factor Analysis," British Journal of Statistical
Psychology, 1952, X, 69-79-

Kaiser, H. F. and Caffres, T. Psychometric Method of Factor
Analysis . Unpublished manuscript, 1963-

Lawley, D.N. "The Estimation of Factor Loadings by the Method
of Maximum Likelihood," Procedures of the Royal Society of Edin .,

19U0, LX, 6k-82.

Rao, C. R. "Estimation and Tests of Significance in Factor
Analysis," Psychometrika, 1955, XX, 93,111.

II. Restrictions

Input is restricted to matrices of order 100 x 100 or less. Up to

50 factors can be handled by this program. If the number of factors
decision is left to the program and more than 50 factors are estimated,
an appropriate message will be printed out and control will be returned
to the system.

III. Parameters

The program name is ITERATIVE FACTOR ANALYSIS. After the name on
the call card the parameters must appear in the following order:

Parameter
Number Use or Meaning

1 Input Address of data matrix. CARDS or

SEQUENTIAL 1-15.

2 Output Address of data matrix. SEQUENTIAL 1-15

and/or PRINT.

3 Output Address for principal axis factors.

SEQUENTIAL 1-15 and/or PRINT.

h Output Address of residual matrix. SEQUENTIAL 1-15

and/or PRINT.

5 Option code if IPRAX
1 if ALPHA
2 if CANONICAL
3 if STEP-WISE MAXIMUM LIKELIHOOD

ITERATIVE FACTOR ANALYSIS
Page 5

Parameter
Number Use or Meaning

6 Maximum number of cycles to be executed.

If left blank, 50 cycles will be used as

upper limit

.

7 Number of factors to be extracted. If left
blank, all factors with roots exceeding unity
will be retained.

8 Exponent of convergence, n, where tolerance
ETA = 10"n

. If left blank n = 3 or ETA = 10"3.

If all goes well, the program will stop as soon

as either one of the stopping criteria is met.

Error stops, if they occur, are labelled
accordingly.

9 Sample size (for CFA only). If left blank,

the chi-square computations are by-passed.
If specified, chi-square is computed with the

sampel size.

10 1 if input matrix was a covariance matrix.

A. Output common to all four sub-programs

1. Matrix output within system conventions:

a. R (input covariance matrix

)

b. F (factor matrix)
c. R-FF' (residual matrix)

2. Vector output, print only:

a. communality vector (last iteration)
b. vector of latent roots of C (last iteration)

3- Constant, print only:

a. number of iterations completed
b. largest discrepancy between trial vectors

(H^, U , H"-1
-, depending on sub-program)

c. root mean square of off-diagonal residual matrix
d. per cent of variance removed

B. Additional output specific to sub-programs

AFA: The alpha-reliabilities of the m retained factors

CFA: chi-square statistic, chi-square appriximations (Wilson,
Hilferty) for p = .05 and p = .01, for comparison with
statistic. Degrees of freedom.

ITERATIVE FACTOR ANALYSIS
Page 6

IV. Special Comments

The accuracy should be approximately 6 digits in computations,

possibly somewhat lower for a very large number of iterations. The

effective accuracy depends on the chosen tolerance ETA and the actual
convergence as indicated by the largest discrepancy between trial
vectors. The chi-square approximations are within 2 x 10"^ for more
than 8 degrees of freedom.

JACOBI

General Description

This program calculates eigenvalues and eigenvectors of a square,

symmetric matrix, using the JACOBI rotating technique. This program is

limited to matrices of 110 rows and 110 columns. The user should realize

that this technique is extremely slow on large matrices, while the program
takes no longer than PRINCIPAL AXIS FACTOR ANALYSIS for small matrices
(up to 20 x 20).

II, Parameters

Parameter
Number Use or Meaning

Input Address of correlation matrix,
or SEQUENTIAL 1-15.

CARDS

2

3

k

Output Address of eigenvectors.

Output Address of principal axis factor.

Output Address of eigenvalues, stored as a row
vector. PRINT is not valid . The eigenvalues
are always printed.

Number of eigenvectors (or factors) to be out-

put.

Special Comments

The eigenvalues are stored in descending algebraic order (from largest
to smallest), and the eigenvectors and factors are placed in the same order.

IV. Reference

Ralston, A. and Wilf , H. S. : Mathematical Methods for Digital Computers ,

John Wiley and Sons, New York, 196i+.

OBLIMAX rotation

I. General Description

The OBLIMAX OBLIQUE ROTATION transforms a set of factors F to a new

set V such that the factor kurtosis,

k
ZZ V. . • -i o

K _ ij i = 1, 2, , n

, 2,2 j = 1, 2, , k
(ZE v. .)

J
' ' '

ID

is at a maximum.

The purpose of the transformation is to attempt to rotate analytically
to a position similar to that obtained by applying Thurstone's rules for

simple structure. (See Multiple Factor Analysis , L. L. Thurstone, 19^7j

pp. 319-^10.) However, Thurstone's rules and the oblimax procedure are

not the same, and it is too much to expect that results obtained from
both procedures will agree exactly.

It would be desirable to solve directly for the transformation matrix
T, but unfortunately no solution to this problem has been found. Instead
oblimax takes two vectors at a time, solves for the rotational angles,
transforms the vectors, and then selects another pair until all k(k-l)
pairs have been rotated. This process is repeated iteratively until the

criterion K no longer increases. Despite the pairwise procedure, K is

well behaved, and in general, approaches steadily to a minimum.

For any pair of factors, a and b, the solution proceeds as follows:

K
ZZ(a. cos 0. + b. sin 0.) EZ(a. + b. X.)

i r
3 i r

3 =
i i J

[zz(a. cos 0. + b. sin 0.)
2

]

2
[zz(a. + b. X.)

2
]

2

The derivative of Kaj-, is set equal to zero, resulting in a quartic
equation in X which is tan 0. Two solutions for X will be maxima, and,

each X is found, the sign of the second derivation is inspected to select
maxima. A small transform (2 x 2) is created, but before post-multiplication
is performed, the transforms must be adjusted so that when it becomes a part
of T, t , and t^, will remain normalized. In this way, both B and T are
developed pair by pair.

For references see:

Pinzka, C, and Saunders, D. R., "Analytic Rotation to

Simple Structure II: Extension to an Oblique Solution."
Research Bulletin RB-5U- 31 • Princeton, N. J.: Educational
Testing Service, 195^-

II. Alternate Use

If the user already has a transformation matrix, he may use it to com-
pute Vrs et . al by giving the input address of T in parameter 8; in this case,

OBLIMAX ROTATION
Page 2

the oblimax calculation of T will be skipped. If both F and T are to be
input from cards, then the data deck of F should precede the deck of T.

III. Output

The OBLIMAX program always prints the following (unless parameter 8

is used)

:

1. The value of K for each pass

2. The iteration time

It outputs the following on demand (See Parameters)

:

1. Transformation matrix T

2. Reference vector structure, Vrs = FT

3- Reference vector correlations, Crs = T'T

k. Diagonal of D and of D"1

where D is the diagonal matrix of the reciprocal
square root of the diagonal elements of Crs

5. Primary factor pattern, Vf.p
= FTD = VrsD

6. Primary factor correlations, C-^p = DC ~-4)

All data is printed out to seven decimal places.

IV. Restrictions

The number of variables plus the number of factors must be no more
than 300.

V. Note on Parameter 2

If row normalization is specified, the normalization constants will be
preserved and the rows will be re scaled to proper length after rotation and
prior to output.

VI . Parameters

The program name, OBLIMAX, appears first on the program call card
and is followed by the following parameters. Any output option (except
parameter 9) may be SEQUENTIAL 1-15 and/or PRINT; it may be left blank
if not desired.

Parameter
Number Use or Meaning

1 Input Address of F. CARDS or SEQUENTIAL 1-15-

OBLIMAX ROTATION
Page 3

Parameter
Number Use or Meaning

2 If rows are to be normalized before rotation,
punch a 1; otherwise a zero or leave blank.
(See Note on Parameter 2)

.

3 Output Address of T.

h Output Address of V
rs

5 Output Address of C

6 Output Address of Vfp

7 Output Address of C„

8 Input Address of T (See Alternate Use)

.

9 D-value and Inverse of D. PRINT only.

PRINCIPAL AXIS FACTOR ANALYSIS
(Eigenvalues and Vectors)

General Description

The purpose of PRINCIPAL AXIS FACTOR ANALYSIS is to determine a

factor matrix, F, given a Gramian matrix, R, of order n such taht

F (n,f)
F '(f,n) = R*(n,n)

where R* is an approximation to R.

The column vectors of F are defined as the factors (measures of

dimensionality) of the original matrix, R. The solution for the matrix

F is the classical eigen problem. Consequently, the computations are

done by an eigenvalue subroutine. Before output the eigenvectors, Ej,

are scaled as follows

:

F(I,J) = E(l,j)*LAMBDA(j)**.5

for I = 1,,n. J = 1,,n.

to generate the principal axis factors, F. (See Introduction on Factor Analysis]

For a more detailed discussion see:

Harry Harmon, Modern Factor Analysis , Chicago, University of

Chicago Press, i960, pp. 15U-191.

Restrictions

The input matrix for the PRINCIPAL AXIS program must not exceed the

dimensions of 190 x 190 double precision. The input matrix is further
limited to being a square, symmetric matrix. Generally correlation,
covariance, or cross-product matrices are used as input data. It should

be noted that matrices with large numerical entries such as cross-products
may generate output values which cannot be printed under the fixed out-

put formats. The probability of this happening is very small. Any com-

munality estimation (i.e., change in the diagonal entries of R) must be

done prior to the input of R, to the PRINCIPAL AXIS program.

If the communality estimates are used, the user should check the
resulting roots for negative numbers. If any exist the associated vector
is meaningless.

The input data may come from any source conforming to SOUPAC. Similarly,
the output codes follow the established conventions and are specified at the

option of the user.

The R matrix may be completely factored (i.e., N factors from N vari-
able matrix) . However, there are three criteria which may be used to stop
the factoring

:

PRINCIPAL AXIS FACTOR ANALYSIS
Page 2

1. The user may specify the number of factors to be extracted.
This criterion provides an upper limit beyond which factoring
will not proceed. Therefore, it is necessary to put the

maximum value in this limit in cases where it is not the

primary criterion.

2. The percentage of total variance removed from R is the
second limiting criterion. This parameter also specifies
an upper limit to the process. Therefore, it should be set

at 100 per cent unless it is the criterion for stopping.

3- The last criterion is to stop when the factor contribution
(eigenvalue or root) falls below 1. The use of this pro-
cedure is dictated by the presence of its parameter.

If all three criteria are employed simultaneously, factoring is stopped
by whichever criterion is first met.

III. Parameters

The parameters for the PRINCIPAL AXIS program appear on the program
call card. They must follow the program name in this order:

Parameter
Number Use or Meaning

1 Input Address. CARDS or SEQUENTIAL 1-15-

2 Output Adddres. SEQUENTIAL 1-15 and/or PRINT.

3 Maximum number of factors to be extracted.
This must be less than or equal to the
order of the input matrix.

h The percentage of total variance to be
removed expressed as an integer between

and 100.

5 The presence of a number greater than
indicates the factoring should stop when
the eigenvalues (roots) fall below unity.

6 Output Address of Eigenvectors

The address of where eigenvalues are to be

placed as a row vector if they must be

stored for further use. If values need
not be saved, leave parameter blank. PRINT
is not valid.

PRINCIPAL AXIS FACTOR ANALYSIS
Page 3

Parameter
Number Use or Meaning

Mode of sorting eigenvalues and associated
vectors. The codes are as follows:

Code Meaning

1

2

10

11
12

Descending algebraic order
Descending absolute values
Order of extraction
Ascending algebraic order
(the k smallest root)

Ascending absolute values
Reverse order of extraction

Leaving any parameter blank is the same as specifying zero. Con-

sequently, options which are not needed can be avoided by leaving the
associated parameter blank.

PROCRUSTES (Oblique Case)

General Description

This program offers 3 options:

1. (Oblique) Procrustes . Given A, B, the program solves

AT* = B + E

for T* in a least square sense (i.e., minimizing tr[E'E]),
so that

T* = (A'Al^A'B,

and then normalized T* by columns to yield T = T*D so that
diag (T'T) = I. It then computes AT which, in a loose sense,
can be regarded as a least squares fit to A to B under the
restriction that diag (T'T) = I. It also provided
Cf = Dn (T'T)

_1 where Dn is a normalized diagonal matrix
so that diag (Cf) = I. If D gave the cosines between tests
Cf will give the factor intercorrelations. A has to be a
full column rank.

Dwyer Extension Analysis . Given F = Rtc , a centroid or
equivalent matrix of cosines between tests t and uncorrelated
factors c, and L = Rcn , a matrix of cosines between uncorre-
lated factors c and uncorrelated reference vectors n, this
program computes

Q = Ttn = F(F'F)~
1
L

which is used as a post-multiplier on some correlations
matrix Ret between the tests t x in F and some set of
extension variables e given Ren , the cosines of the extension
variables e with reference n, to the extent that the former
can be projected into the sub -space spanned by the latter.
This multiplication

Ren = Ret Ttn

can be performed by use of the MATRIX program.

Left Inverse (transposed). Given A, the program will return

Q = A(A'A)"
1

provided A was a full column rank. Q is the transposed left
inverse of A which can be used in lease squares application.

IP Restrictions

Input is restricted to matrices (A, B, or F) of order 190 x 50 or less,

PROCRUSTES
Page 2

III. Parameters

The parameters for this program appear on the program call card.

They must follow the program name in this order:

Parameter
Number Use or Meaning Procrustes LEA LINV

1 Input Address
CARDS or

SEQUENTIAL 1-15-

A F A

2 Input Address
CARDS or

SEQUENTIAL 1-15- B L

3 - Output Address
SEQUENTIAL 1-15
and/or PRINT.

A F A

Output Address B L

SEQUENTIAL 1-15
and/or PRINT.

Output Address T Q A(A'A)'

SEQUENTIAL 1-15
and/or PRINT.

Output Address C~
SEQUENTIAL 1-15
and/or PRINT.

Output Address AT
SEQUENTIAL 1-15
and/or PRINT.

Output Address E
SEQUENTIAL 1-15
and/or PRINT.

Choice Address 12

SQUARE ROOT FACTOR ANALYSIS

I. General Description

The SQUARE ROOT method of factor analysis, also called the Diagonal
Method, by L. L. Thurstone, decomposes a correlation matrix R (or any
other positive semi-definite or definite symmetric matrix) such that

R = F F' + R(k+1)

where R(k+l) is the residual matrix after extracting k factors. Of course
if all n factors are extracted, the residual matrix becomes a null matrix.

The factor fj is computed by dividing each element of the j^h column
of R by its diagonal square root

:

f^ := r
i
-/v/"rij 33

(i = 1,2,

The matrix A = fj'f" is then subtracted from R and the operation repeated
on the residual matrix.

Prior to the widespread use of high speed computers, the SQUARE ROOT
method was sometimes used as a substitute for the PRINCIPAL AXIS or CENTROID
method due to the relative ease of computing a square root factor. When
used in this way, one seeks to extract the maximum variance for each factor,

in which case Parameter h should be blank. The program then selects
the next column on the basis of the largest residual column sum of squares.

Nowadays, however, the SQUARE ROOT method is more likely to be used
for special purposes. By selecting successive pivot variables, the user
retains control over the factoring. Factors are passed directly through
the test variables and the effect of these variables is removed from the

matrix. The communalities or row sums of squares are the squared multiple
correlations of the remaining variables with the pivot variables.

The pivots selected may be any columns in the matrix. Let us assume,

however, that these are adjacent to each other in the upper right hand
corner of the partitioned matrix below:

R =

R
PP

R
ps

R Poosp ss

Then the effect of pivoting successively on the variables in the upper
right hand corner is shown by the residual matrix as follows:

R (P+1) = R-FrF
'

R ^R R "J-R
ss sp pp ps

II. Restrictions)
A. Dimension

Maximum size of the R matrix is 190 variables.

SQUARE ROOT FACTOR ANALYSIS
Page 2

B. Special Conditions

1. The researcher may specify the extraction of any number of
factors up to dimension of R.

2. The researcher may specify the diagonal element to be used
in the extraction of each factor, or he may have the procedure
remove the maximum variance each time.

3. The residual matrix may be saved if the researcher desires.

III. Parameters

Following the program name the parameters must appear in the following
order on the program call card:

Parameter
Number

2

3

h

Use or Meaning

Input Address. CARDS or SEQUENTIAL 1-15-
(Correlation or positive definite or semi-
definite matrix).

Output Address. SEQUENTIAL 1-15 and/or PRINT.

Number of factors extracted.

Input Address for diagonal elements.
CARDS or SEQUENTIAL 1-15-

Output Address for residual matrix.
SEQUENTIAL 1-15 and/or PRINT.

IV. Special Comments

If the diagonal element for each factor is specified, and if both
input addresses are cards, then data precedes diagonal specification.

V. Example

Assume you have a 20 x 20 correlation matrix on cards and that you
want to extract 15 factors ; also you are reading the pivot column from
cards. The program would be set up as follows:

SQUARE ROOT FACTOR ANALYSIS
Page 3

/*ID

// EXEC SOUPAC
//SYSIN DD *

SQU(C)(P)(15)(C)(P).
END SOUPAC
DATA(20)(8F9-T)

data

END #
DATA(15)(15I2)

END #
/*

diagonal specification card(s)

THREE-MODE FACTOR ANALYSIS

I. General Description

A. GENERAL COMMENTS

This program provides a factor analytic solution for a 3-dimensional
i by j by k data matrix. The computational procedures employed are

those presented in Method III of Tucker's article (reference below).
This method provides most efficient analysis when one of the modes,

usually individuals is quite large, though this is certainly not a

necessary condition.

B. THE THEORETICAL MODEL

Here, d, j, and k represent the modes of classification which
are directly related to the observation of the data; i, j, and k are

thus termed observational modes. An example would be the observation
of scores for i individuals on j tests given under k different conditions.

Through factoring, we wish to reduce the observational modes i,j, and
k to corresponding derivational modes m, p, and q. Each of the deriva-
tional modes can be thought of as a set of factors in the domain of the
corresponding observational mode. The core matrix G then serves to

describe the relationships among the derivational modes.

The fundamental three-mode factor analysis model is represented by
the equation

:

Z- ZEEx - ., = a. b. a. g ,ljk m q p m jp kq mpq

where x. ., is an approximation to the observed score x. ... ; a. , b. ,ljk ** ljk 1m' jp'

and c, are entries in two-mode matrices .A , .B , and
,
C describing

kq l m 3 p
7 k q

the elements in the observational modes i, j, and k in terms of the
dimensions in the derivational modes m, p, and q respectively; the
coefficients g are entries in a three-dimensional matrix G and
represent the measures of the phenomenon being observed for each
combination of the dimensions of the derivational modes.

In matrix form, the model could be represented as:

.X.. = .A G, A B. % C.) ,
1 jk l m (pq)

v

p j qk'

where X indicates a Kronecker product. Matrices A, B, and C are

factor solutions for modes i, j, and k respectively which serve to
transform the core matrix G of the 3 derivational modes to the matrix
X representing the 3 observational modes.

THREE MODE
FACTOR ANALYSIS

Page 2

C. INPUT DATA

The input data must be a Gramian matrix, usually correlations,
covariances, or cross-products, in the form .,R , where i is assumed to
be the largest mode and jk represents the combination mode, with
mode k nested within mode j.

II. Output

The output consists of the following:

(l) the .P. and CL matrices which represent the correlations, covariances,
or cross products within modes j and k respectively;

(2^ the eigenvalues and eigenvectors of R ;
Jk jk

(3) the eigenvalues and eigenvectors of .P.;

(h^ the eigenvalues and eigenvectors of ,0-

(5
'

the core matrix G , where m, p, and q represent the derivational
modes corresponding to observational modes i, j, and k respectively.

All of this is printed out and may also be stored on sequential storage
devices. The user must specify the number of factors to be extracted
from each of the three modes. This procedure is employed since the use
of other factor- stopping criteria (e.g. per-cent of variance accounted
for, or eigenvalues below unity^ could easily lead to the computation of
a great many useless factors as well as a very large and unmanageable
core matrix. The user is also cautioned against specifying large numbers
of factors since this would cause substantial increases in time required
to factor the various modes and compute the core matrix.

It is strongly recommended that the user be familiar with the Tucker
article and with factor analysis in general before attempting to use
this program.

III. Parameters

The program mnemonic (T-Ml appears first on the program card and is
followed by the following 16 parameters, the first 8 of which are required.
Output addresses are optional. All output will be printed.

Parameter
Number Use or Meaning

1 Input address of R matrix in the form „ R.,
Dk jk

(Cards or S1-S15).

2 Number of subjects or elements in mode i.

3 Number of variables in mode j.

THREE MODE
FACTOR ANALYSIS

Page 3

Parameter
Number

It

5

6

7

8

9

10

11

12

13

11+

15

16

IT

Use or Meaning

Number of variables in mode k.

Number of factors to be removed from matrix R (mode i),

Number of factors to be removed from matrix P (mode j)

,

Number of factors to be removed from matrix Q (mode k)

(1) If input matrix is cross-products

(2) If input matrix is correlations.

(3) If input matrix is covariances.

Output address for row vector of eigenvalues of R.

Output address for eigenvectors of R.

Output address for matrix .P •

Output address for row vector of eigenvalues of P.

Output address for eigenvectors of P.

Output address for matrix -.0,'

Output address for row vector of eigenvalues of Q.

Output address for eigenvectors of Q,.

Output address for core matrix G .

pq m

IV. Reference

Tucker, Ledyard R. Some mathematical notes on three-mode factor analysis,

Psychometrika, 1966, 31, 279-311.

UNRESTRICTED MAXIMUM LIKELIHOOD FACTOR ANALYSIS

Parameter
Number Use or Meaning

1 Input Address for correlation matrix.
SEQUENTIAL 1-15; CARDS are not permitted

2 Output Address for final unrotated factor matrix.
SEQUENTIAL 1-15- See also Parameter 13-

3 Input Address for row vector of initial
estimate of uniqueness. CARDS, SEQUENTIAL
1-15 (optional).

k Lower bound for number of factors.

5 Upper bound for number of factors

.

6 Sample size (number of observations) on
which correlation matrix is based.

7 Maximum number of iterations.

8 Probability of chance occurance, i.e., *1.00*.

9 1 to print input correlation matrix and partial
correlation matrices after any variables have
been removed.

10 1 to print technical output.

11 1 to print intermediate results.

12 1 to punch unrotated factor matrices.

13 1 to apply a varimax rotation to all factor
matrices. If this parameter is used the output
of parameter 2 will be a rotated factor matrix.

This program has been taken directly from JSreskog (1967) with his per-
mission. Anyone interested in the methods is referred to the references listed
below. The program is temporarily limited to 75 variables and 30 factors.
Parameters 1, k, 5» 6, 7> and 8 are required. Parameter 8 must be enclosed
within asterisks, **, and must have a punched decimal point.

References :

Joreskog, K. G. UMLFA - a computer program for unrestricted maximum likelihood
factor analysis. Research Memorandum 66-20. Princeton, New Jersey:

Educational Testing Service. Revised Edition, 1967

•

JSreskog, K. G. Some contributions to maximum likelihood factor analysis.
Psychometrika , I967, 32, 3+1+3-U82

.

VARIMAX FACTOR ROTATION

I. General Description

VARIMAX ROTATION is used to redistribute a factor matrix (principal

axis, centroid, etc.
1

) variance so that the matrix approches orthogonal

simple structure. The varimax scheme maximizes the following criterion

function:

Z (hz(a,.
2/h

(j)
2

)

2
- (z(a, ,

2/h
(j)

2
))

2
)

s 3
U '

S)
j

l3 ' S)

where j is the variable index number: 1, ., n

s is the factor index number: 1, , f

a/ . \ is the factor loading of the n^h variable on the s factor

hj is the j* variable communality

For further discussion see:

H.F. Kaiser, "Computer Program for Varimax Rotation in Factor
Analysis", Educational and Psychological Measurement , Vol. XIX,

Nov. 3, 1959, pp. 413-^207"

Cooley and Lohnes, Multivariate Procedures for the Behavioral
Sciences , New York, John Wiley and Sons, Inc., 1962, pp.l6l-3-

II. Restrictions

The input matrix for VARIMAX ROTATION must not exceed 190 variables
and 190 factors. The number of factors may be anything greater than or

equal to 2. Any factor matrix generated by a statistical system factor
analysis program is acceptable input. A matrix may also be entered from
cards.

III. Parameters

The parameters for the VARIMAX ROTATION appear on the program call
card. They must follow the program name in this order:

Parameter
Number Use or Meaning

1 Input Address. CARDS or SEQUENTIAL 1-15-

2 Output Address. SEQUENTIAL 1-15 and/or PRINT.

3 The presence of a number greater than in this
parameter indicated the communalities should be
printed.

4 or blank for normal VARIMAX. 1 if raw VARIMAX
is desired.

*If CARDS are used the DATA card must contain the number of rows as well
as the number of columns in the input matrix (see User's Guide for details)

SOUPAC (Statistically Oriented Users Programming and Consulting)

ECONOMETRICS PACKAGE

ECONOMETRIC REDUCED FORM AND RESIDUAL ANALYSIS

I- General Description

The ECONOMETRIC REDUCED FORM AND RESIDUAL ANALYSIS program calculates
the following

:

(1) Residuals

U = (YX) fp7'

where

:

(YX) is the raw data matrix of endogenous and exogenous variables
andjp/is the matrix of coefficient estimates.

(2) Durbin-Watson statistic each equation(i)

N
2

Z [Uj(t) _ Uj(t-1)
3

t=2
'

Z [Ui(t)]
2

t=l

(3) Covariance matrix for residuals

w= :'p] (s)ip

where

:

S is the raw data covariance matrix.

(U) Reduced form estimates

* = -'(P)
-1

(r)

(51 Reduced form predicted values

y" = Yn

(6) Reduced form residuals

V = Y - Y

(7) Covariance matrix for reduced form residuals

(P"
1)'w(p-1

)

References

ECONOMETRIC REDUCED FORM AND
RESIDUAL ANALYSIS

Page 2

II,

Johnston, J., Econometric Methods , New York, McGraw-Hill Book
Company, Inc., i960.

Goldberger, Arthur S., Econometric Theory , New York, John Wiley
and Sons, Inc., 196U.

Restrictions

Only those inputs used in the calculations called for need be given.
They must be in the following formats

:

(1) Coefficients:

The coefficient matrix for K equations with N variables, Nl
exogenous and N2 endogenous, must be a K by N+l matrix. Each
row corresponds to an equation. The first element in each row
is the constant term followed by the coefficients matrix (i.e., exog-
enous coefficients first; endogenous coefficients next). In
each row, there must be -1 which corresponds to the endogenous
variable that was normalized on.

(2) Raw Data:

The data must be arranged so that exogenous variables occur
first and endogenous variables last. (The TRANSFORMATION program
may be used to arrange data in this way, if it is not already
like this^

.

(3) Raw Data Covariance Matrix:

The covariance matrix must have the following form

sample
size

(standard deviations)

X (means

,

Covariance (exogenous first, endogenous last)

Care should be taken to see that an input address is specified for any data
needed in calculating the desired statistics and that any intermediate
statistics needed are stored (i.e., an output address besides print is
specified). The following list indicates which previous statistics are
needed in the calculation of each statistic.

ECONOMETRIC REDUCED FORM AMD
RESIDUAL ANALYSIS

Page 3

1. Residuals - coefficients and raw data

2. Dubrin-Watson statistic - coefficients and raw data

3. Covariance matrix for residuals - coefficients and raw
data covariance matrix

k. Reduced form coefficients - coefficients

5. Reduced form predicted values and residuals - reduced form
coefficients (no output address) and raw data

6. Covariance matrix of reduced form residuals - reduced form
coefficients and covariance matrix of orginal residuals

This program is restricted to less than 150 variables.

III. Parameters

The parameters appear on the program card following the name ECONO-
METRIC in the following order:

Parameter
Number Use or Meaning

1 Input Address for coefficients. SEQUENTIAL 1-15.

2 Input Address for raw data covariance matrix.
SEQUENTIAL 1-15-

3 Input Address for raw data. SEQUENTIAL 1-15-

(See Special Comments)

.

h Number of exogenous variables (total).

5 Output Address for residuals. SEQUENTIAL 1-15
and/or PRINT.

6 Output Address for covariance matrix of
residuals. SEQUENTIAL 1-15 and/or PRINT.

7 If greater than 0, reduced forms are
calculated and printed.

8
'

If greater than 0, reduced form predicted
values and residuals are printed.

9 If greater than 0, covariance matrix for
reduced form residuals is printed.

ECONOMETRIC REDUCED FORM AMD

RESIDUAL ANALYSIS
Page k

IV. Special Comments

If Parameter Number 3 is specified, the Durbin-Watson statistic will
be calculated and printed.

K-CLASS ESTIMATION

I. General Description

KIClass and K2Class programs work together to do K-class estimation.
There are three estimators which belong to the K-class. These include:
Ordinary Least Squares (multiple regression), Two-stage Least Squares,
and Limited Information Maximum Likelihood.

II. Description of KIClass Output

The KIClass program calculates the "basic statistics:

_ EX.

Mean: X. =
„T where N = Sample Size

1 N

Variance ZX.X.
Covariance: S. .

= —|-"- - X.X.
ij N 1 J

Standard Deviation: s. = / S.

.

1 li

Correlation: C. .
=

S. .

10 s.s.

Cross-products in matrix notation : CP = X'X

KIClass also calculates the eigenvalue to he used in Limited Information

Maximum Likelihood estimation in K2Class.

Variables must be ordered; exogenous, endogenous, (independent, dependent),

III. Description .of K2Class Output

K2Class calculates estimates and associates statistics for Ordinary
Least Squares (OLS), Limited Information Maximum Likelihood, and Two-
stage Least Squares.

Formulas

B' = estimates of the endogenous variables

Y - estimates of the exogenous variables

y = variable normalized on

Y = endogenous variable in the equation

X = exogenous variables in the equation

X = exogenous variables in the system

Estimating Formulas

K-CLASS ESTIMATION
Page 2

Y'Y - kV'V

X'Y

Y'X
*

-1

X'X
* *

Y'y - kVy
c

x'.yn

or

= A J

where V'V = Y'Y - Y'X(X'X)
1
X'Y

V'y = Y'v - Y'X(X'X)
-1

X'yJ o • o
v J o

k determines the estimating technique.

standard Error of Estimate

;
= yX - (e y) c

N-J

where j = Rank of A
-1

Standard Error of the Estimated Coefficients .

s*. 5 The square root of the i diagonal element of the

a A matrix

li

ariance matrix of the coefficients

C = a A

K-CLASS ESTIMATION
Page 3

IV. Ordinary Least Squares (OLS)

When K = 0, the K-class formula reduces to Ordinary Least Squares. Y

is then assumed to he another exogenous variahle in the equation. When
ordinary least squares is specified the following additional statistics
are supplied.

In matrix notation

2
0C - ly / N Explained Sum of Squares

R = -
p

y 'y - Zy / N Total Sum of Squares
o " o o

Total Sum of Squares

TSS = yQ
' yQ

- I
2
y /N

Regression (Explained) Sum of Squares :

RSS = 9C - £y
2
/N

Error (Unexplained) Sum of Squares :

ESS = TSS - RSS = y 'y - 0CJ o o

Example: Suppose that there were two possihle models that one wanted to

estimate. In one model variahle 10 is included and in the other variahle
10 was not included.

K1C(S1)(S2)(0)()()(1)(1)(Hi).
END P

K2C(S2)(S3)(SM()(10)(2)*0*.

(10)(1)(1)(2)(3)(M(5K6)(7)(8)(9)(10)(11).
(9)(l)(D(2)(3)(U)(5)(6)(7)(8)(9)(ll).
END P

V. Limited Information Maximum Likelihood (LIML)

When K = the smallest eigenvalue as calculated in KIClass, K2Class
calculates Limited Information Maximum Likelihood estimates.

The eigenvalue is calculated in the following manner:

Let

W = Y'Y - Y'X (X'X)
_1

X' Y
* * *

W = Y'Y - Y'X(X'X)~
1

X'Y

KIClass transfers to K2Class the smallest eigenvalue of the matrix W W^

K-CLASS ESTIMATION
Page k

Example: Suppose there is a two equation system with four exogenous and

two endogenous variables. The following program will calculate LIML

estimates for both equations:

KLC(C)(S1)(0)(2)(U)()()(S2).

(2)(2)(1)(U)(5)(6).

(2)(2)(2)(3)(5)(6).
END P

K2C(S1)(S3)(SU)(S2)(U)(2)*-1*.
(2)(2)(1)(U)(5)(6).

(2)(2)(2)(3)(5)(6).
END P

VI. Two-stage Least Squares (2SLS)

VJhen K = 1 is specified Two stage Least Squares estimates are computed.

Example : Suppose one has a three equation model that contains three

endogenous and ten exogenous variables. The following program will calculate

2SLS estimates.

K1C(C)(S2).
END P

K2C(S2)(S3)(SM()(10)(3)*1.*.

(5)(2)(1)(2)(3)(M(5)(H)(13).
(M(2)(3)(U)(6)(7)(12)(13).
(5)(2)(1))2)(8)(9)(10)(11)(12).
END P.

r TI. Parameters

A. MAIN Parameters

1. KIClass

Parameter
Number

1

2

1+

5

Use or Meaning

Input Address. CARDS, SEQUENTIAL 1-15-

Output Address for raw data covariance
matrix. SEQUENTIAL 1-15-

Type of Input = raw data
1 = cross-products
2 = covariance

Number of equations of LIE; otherwise

Total number of exogenous variables in LIE

system; 1 <_ n <_ 9^+ •

1 if want covariance matrix printed.

K-CLASS ESTIMATION
Page 5

Parameter
Number

7

8

Use or Meaning

1 if want cross-products matrix printed.

Output Address for eigenvalues.
SEQUENTIAL 1-15-

1 if want correlations matrix printed.

2. K2Class

Parameter
Number

5

6

7

Use or Meaning

Input Address same as output address for

KIClass.

Output Address for estimated coefficients.
SEQUENTIAL 1-15-

Scratch Address
SEQUENTIAL 1-15-

Input Address for Eigenvalues same as

output address in KIClass.

Number of exogenous variables in the system.

Number of equations.

Floating point value of k. (See special
comments.) This value should be enclosed
in asterisks.

B. Sub-parameters (Equation Control Cards)

Subparameters are needed for all K2Class programs and for KIClass
when LIML estimates are desired. There is a subparameter card for

each equation. If subparameters appear in both KIClass and K2Class,

they must appear in the same order.

Each equation control card has the following form:

Parameter
Number

1

2

3

Use or Meaning

Number of exogenous variables in the equation.

Number of endogenous variables in the equation.

The variable number of all variables in the
equation in the order

:

K-CLASS ESTIMATION
Page 6

1 - exogenous in the equation
2 - endogenous in the equation with

variable standardized on last.

VIII. Special Comments

A. If K = *0*

If K = *1*

If K = *-l*

Ordinary Least Squares Estimates are computed.
2-Stage Least Squares Estimates are computed.

Limited Information Maximum Likelihood Estimation are
computed.

B. When LIML estimates are desired, the output and input addresses
for eigenvalues must he specified .

C. KIClass accepts data from cards or intermediate storage either as

raw data, cross-products, or covariance. If cross-products or

covariance are used as input to KIClass, the matrix must be in

the following order

:

Cross-products

Ex

Covariance

Ex cross-
products

covariance

Input to K2Class must come from KIClass. However, once data has been
processed by KIClass, it may be used by K2Class any number of times.

IX. References

Goldberger, A. S. , Econometric Theory , New York, John Wiley and Sons,

Inc. , 196U.

Johnston, J. , Econometric Methods , New York, McGraw-Hill Book Company,
Inc. , I960.

LINEAR PROGRAMMING

I. General Description

LINEAR PROGRAMMING maximizes or minimizes a linear function subject to

certain linear inequalities called constraints.

In matrix notation

:

Find the solution to

AX <, = , >b (a system of linear equations or inequalities)

which maximizes (or minimizes)

Z = CX
where X >

A is the matrix of coefficients of the constraints, X the vector of vari-

ables, C the vector of costs or profits associated with e ach variable, and b

a vector or matrix of non-negative constants which places a bound on the linear
equations.

The equations, AX <, =, >b in n variables define and bound a space called

the feasible space in which all allowable values of the n variables are defined.

The SIMPLEX criterion finds those combinations of variables which optimize the

objective function within this feasible space. To solve the system of linear
equations defined above, the inequalities must be changed to equalities. This

is accomplished by addition of surplus variables to "greater than" constraints,

and slack variables to "less than" constraints. To create the basis for solving

a system of linear equations, an identity matrix must be formed and augmented
to the A matrix of structural variables. Creation of the identity matrix is

completed by addition of artificial variables to constraints with a "greater
than" relational operator. The program adds any needed variables.

Since there are more variables (structural + surplus + slack + artificial)
than rows, some method must select which variables will be in solution. The

SIMPLEX Algorithm selects a number of variables (equal to the number of rows)

which will be in solution. The final solution is the maximum (or minimum) of

the linear function- subject to the constraints. Since slack and surplus vari-
ables have "real" meaning, they may appear in the final and intermediate solu-

tions. Their presence as a non-zero value indicates that the constraint to

which they were added is not binding. Artificial variables have no "real"
meaning. Presence of artificial variables in solution indicates that some con-

straints are so constructed as to preclude a solution which has "real" meaning.

The slack and surplus variables are given costs of zero in the objective
function. Artificial variables are given large negative costs. SIMPLEX attempts
to drive artificial variables from solution.

Failure to drive artificial variables from solution may indicate a problem
in which constraints are mutually exclusive or that the cost assigned to the

artificial variable is not large enough.

LINEAR PROGRAMMING
Page 2

In matrix notation the augmented matrix before calculations begin would
appear as: , . i

A
I
I

I

S
I

= b

where I is the identity matrix of slack and artificial variables and S is the
matrix of surplus variables. Row operations are performed on the augmented
matrix according to the SIMPLEX criterion. After any number of row operations,
the inverse matrix of the original coefficients of structural variables now
in solution is contained in the columns where the original identity matrix was
located. At every stage (row operation) an identity matrix will be present.
This identity matrix indicates the variables in solution.

Since the original table is stored by the program, it is possible to com-
pare the results of the inverse obtained through LINEAR PROGRAMMING with the
inverse obtained by a standard inversion technique. The user may set the absolute
value for this comparison in Parameter 3- If the comparison does not meet the
accuracy requirement, a new table is formed using the original table and the
calculated inverse. After a feasibility check, the program continues calculations
until an acceptable solution is obtained.

References

Llewellyn, R. LINEAR PROGRAMMING . New York, New York: Holt, Rinehart,
and Winston, 1966

.

Hadley, G. LINEAR PROGRAMMING . Reading Massachusetts: Addison-Wesley,
1953.

LI . Restrictions

The program is limited to a maximum of 90 rows or constraints, 300 columns
or variables, and 5 columns in the requirement matrix.

These limits are internal limits and the user is warned that large problems
may exceed the program capacity during accuracy check and calculations involving
multiple column requirement matrices. Program capacity WILL be exceeded if:

the number of constraints + number of structural variables + number of "greater
than" inequalities > 300.

Input may come ONLY from CARDS in the form of subparameters.

LI. Parameters

All floating point numbers (indicated by FP) must be enclosed by a pair of
asterisks. All integer numbers (indicated by IN) must be enclosed in parentheses.
The main call to the program and each subparameter must be terminated by a period
(•)•

The program is entered by punching the symbols L-P followed by the appropri-
ate main parameters and subparameters. All main parameters have default options.

LINEAR PROGRAMMING
Page 3

Main Parameters to follow L-P

1 Cost of artificial variables *large negative FP numbers*.
Default = -1.E50.

2 Minimum value for calculations *FP*. If any calculation
falls below this value, it is set to zero. Default =

internal calculations.

3 Value for accuracy check *FP*. If absolute value for calcu-

lated difference (See General Description) falls below this

value, final value is termed inaccurate and calculations are
performed to correct rounding errors. Default = .5 .

k If 1, suppress print of solution matrix (IN).

5 If 1, suppress print of check matrix (IN).

6 Print every IN step, i.e. row operation (IN).

7 If 1, insert small positive, non-zero number for any zero in the b

vector. Useful aid if b vector contains many zeros.

Subparameter
me program now expects to find the word MINimize or MAXimize followed

by a string of constants which represent, in sequential order , the cost or

values associated with each variable. All non-zero constants (with or without
decimal) must be enclosed by a pair of asterisks. Zeros may be enclosed by
asterisks. A series of sequential zeros may be represented by a pair of paren-
theses, i.e. the integer number in the pair of parentheses represents the number
of sequential zeros to be inserted. All coefficients must appear and be in

sequential order.

The cost coefficients representing the objective function are terminated by
a period. The constraints are entered in a similar manner. All variables must
be in sequence. Coefficients of zero must be included. Multiple requirement
vectors are entered in the standard form. The constraint is terminated by a per-
iod. Comments which do not include period (.), comma (,), asterisks (*) or left
parenthesis may be entered at any point outside those characters delimiting con-

stants. The requirement vectors are separated from the rest of the constraint
by relational operators. All coefficients must appear and be in sequential- order .

The program recognizes three relational operators: LE (less than or equal),

EQ (equal), and GE (greater than or equal). These relational operators are

surrounded by quotes ("). See Section V. Examples in this program.

Output

The output consists of the objective function, the final solution matrix,

the variables in solution, and the optimal functional value. In addition,
Shadow Prices or opportunity costs are printed. Shadow Prices provide useful
information on the "cost" of having certain constraints, or the increased pro-
fit to be obtained by 'relaxing' a particular constraint.

LINEAR PROGRAMMING
Page U

For example

:

Constraint 1: IX(l) + 2X(3) < 5-0
To this constraint, slack variable X(l) is added to make it an equality. In
the final solution, X(l) is not in solution. The optimal maximum functional
value is 20. The 'Shadow Price' on variable X(l) is 2.0. This means that if
we relax this constraint to 6.0, the optimal maximum value could be 22.0. For
every unit the constraint is relaxed, the functional value will be changed by
the Shadow Price. The Shadow Price holds until the constraint is no longer
binding. The same logic may be applied to "GE" type constraints with surplus
variables. For interpretation of Shadow Price for structural and artificial
variables, the user is referred to texts under headings such as "Dual Algorithm",
Interpretation of the Dual", and "Opportunity Costs".

Basis variables refer to those variables which form the original identity
matrix. The variable numbers are listed in the order they were added to the
constraints. The number of basis variables will always equal the number of
constraints. To determine whether a basis variable is a slack or artificial
variable, refer to the coefficients of these variables in the objective func-
tion. A slack variable will have a coefficient of 0.0.

MESSAGES

SLEM TOO LARGE : More than 300 variables or 100 constraints on input or

during addition of slack, surplus, and artificial variables.
NORM FOR CUTOFF : Value of Main Parameter Number 2, either supplied or

default.
.

- R IN SIMPLX : Source Program Error. See a consultant.
"OLUT iPN UNBOUNDED : Constraints do not form a closed space. Optimal

functional value is infinite.
iER OF ITERATIONS : Number of row operations needed to calculate final
solution. For multiple requirement vectors, number is not cumulative.

ACCURACY ACCEPTABLE or ACCURACY NOT ACCEPTABLE : Comparison with Main Para-
meter Number 3-

VARIABLE ADDED
VARIABLES ARE : Iterations either inaccurate and new variable added

or. during execution of multiple requirement vector, a new variable had
to be added to make problem feasible (requirement vector positive).

NON-RESOLVABLE TIE : Cannot occur mathematically. Only reason for occurance
is due to rounding error in machine. Can be corrected by incrementing
or decrementing requirement vector by a small amount. Perform this
only for constants of same value. (Use Parameter 7).

Other messages should be self-explanatory.

. 'r i-il Comments

Speed and accuracy can be increased by observing the following suggestions:

1) Never make Parameter 3 (accuracy check) larger than (0.1) X (number of
significant digits in table). For example, if numbers in the table are
k, 5, .001, 86, 95-32, you have "one" significant digit. Set Parameter 3

to *.l*.

LINEAR PROGRAMMING
Page 5

2) Scale numbers in table to get them into same range. For example, if
table entries are of the order 10 , and the requirement vectors are of
the order 103, scale requirement vectors to KH- and rescale solution by
10^. The objective function may also be rescaled in a similar manner.
Rescaling essentially reflects the number of significant digits.

V . Example s

The problem:
Minimize --75X(l) + 150X(2) -.02X(3) + 6x(k)
Subject to the following constraints:

Constraint (l)

.25X(l) -60X(2) -.04X(3) + 9X(*0 < 0, 1, 2
Constraint (2)

.05X(l) -90X(2) -.02X(3) -3X(U) < 0, 1, 2

Constraint (3)
1X(3) < 1, 2, 3

Could be set up on cards as follows

:

/*ID

// EXEC SOUPAC
//SOUPAC.SYSIN DD *

L-P*-1.E20****.1*()0 (!)•

MIN*- .
75**150**- . 02**6*

.

LABOR * . 25**-60**-

.

0k**9*" LE"*0**1**2*

.

LAND* . 05-**-90**- . 02**-3 • 0*"LE"*0**1**2*

.

CASH(2)*l*(lV'LE"*r*-*2**3'*-

END PROGRAM
END SOUPAC
/*

LINEAR PROGRAMMING
Page 6

This problem will result in an unbounded solution with requirement

vector number one. The problem terminates without performing calculations

on the other vectors.

Note insertion of sequential zeros on CASH card.

QUADRATIC PROGRAMMING

I. General Description

This program maximizes the quadratic function ex + 1/2 xTDx subject to
the linear constraints Ax <_ b, where c is an n-vector, D is a symmetric
negative definite n by n matrix, A is an m by n matrix of coefficients
or constraints and b is an m vector.

The Kuhn-Tucker theory shows that a solution to the constrained maxi-
mization problem is obtained if and only if vectors x, L, v, and w can be
found such that

:

Dx - ATL + v = -c

Ax + w = b

where the elements of x, L, v, and w are non-negative and the conditions
xv = and lw = are satisfied. To find these vectors, artificial vectors
z1 and z^ are added to the first equation and a y-vector is added to the
second. Simples techniques are then used to eliminate first the y
and then the z-^ amd z2 variables.

References :

Carr, C. R. and C. H. Howe, Quantitative Decision Procedures in Management
and Economics , McGraw-Hill , 196*+

.

Hadley, G. , Nonlinear and Dynamic Programming , Addi son-Wesley, ISSh.

Wolfe, P., "The Simplex Method for Quadratic Programming", Econometrica ,

27, 1959, PP. 382-398.

NOTE: Carr and Howe claim that elements of the w-vector may not be en
entered in the first stage of the simplex procedure. Since this requires
that there exist a solution to Ax = b, it is a severe restriction. It

is also unnecessary, and this program does enter w-variables during the
first stage. Otherwise, the procedures used closely follow those of
Carr and Howe.

II. Restrictions

The maximum number of x-variables is kO. The number of x-variables
plus the number of constraints must be <_ 80.

The D-matrix must be negative definite. If this is dubious, use the
PRINCIPLE AXIS FACTOR ANALYSIS program to extract the eigenvalues. All
must be negative. Semi-definite D-matrices may be perturbed or the user
may limit the number of iterations to be performed. If this limit is

exhausted, final solution vectors will be printed out (see below).

The only form of input is a matrix of data. If there are n x-variables
and m constraints , the matrix should have n + 1 columns and m + n rows

,

partitioned as follows:

QUADRATIC PROGRAMMING
Page 2

D (n x n)

A (m x n)

c (n x 1)

b (m x 1)

Note that this is the c vector, not the -c vector mentioned in the
Kuhn-Tucker formulas. Also note the + sign and the 1/2 coefficient of the
xDx term. All constraints in this type of input are assumed to be < type.
Multiply > constraints through by -1. The equality constraing:

n

Z a. jX = b.

0=1

is equivalent to the two constraints Za-^X. <; b- and Z-a. .X. <; b. .

This matrix can be read- in from cards or from temporary storage. Only
one problem can be read from a tape or sequential location. Multiple problems
must be read from cards, the matrix for each problem preceded by its own
"DATA (N + l) (FORMAT)" card and followed by its own "END#" card.

The elements of the w-vector are always non-negative and are to be
considered "slack" for < constraints and "surplus" for > constraints.

The user may obtain the basis vector at the end of each iteration
showing which variables are in the basis and their quantities (option 2).
lie may alternatively have the entire matrix printed out after each iteration
(option 3)- The user is cautioned that option 3 can use immense quantities
of paper and time unless the problem is very small.

A method outlined in Hadley, pages 183 - 186, is used to avoid cycling
in cases of degeneracy.

Parameters

The program call card should have the name QUADRATIC PROGRAMMING
followed by these parameters:

Parameter
Number Use or Meaning

1 Number of problems following

2 Input Address. SEQUENTIAL 1-15 or CARDS.

3 Output option:
if final results only

1 if iterated basis vectors
2 for entire iterated matrix

h Limit on number of iterations if
desired. Leave blank otherwise. Default
is 1000.

QUADRATIC PROGRAMMING
Page 3

Parameter
Number Use or Meaning

IV. Example s

Example I

Pertubation quantity. Punch quantity
to be subtracted from diagonal of D-

matrix between asterisks instead of

parenthesis; e.g., *.001*. Leave blank
if not desired.

Suppose we wish to maximize the quadratic function

F = IOx-l + 20x2 + 15x3 - Ix-l
2 - 2x2

2
+ lxix2

subject to the constraints

2xi + 3x2 + Ix^ < 50

lxj + 3x3 < 70

3xj_ + 2x2 < 60

Since the D-matrix is only negative semi-definite, it should be perturbed
to insure convergence to a solution. The following set of cards would solve

the problem using data matrix input

:

/*ID

// EXEC SOUPAC
//SYSIN DD *

QUADRATIC PROGRAMMING (l) (CARDS) (0) (0)*.001*.

END SOUPAC
DATA(i+)(UF3.0)

1 10
1 -if 20 c

Vi
2 3 1 50
1 3 70 b

3 2
//

60

/*

QUADRATIC PROGRAMMING
Page h

Example II

:

Maximize

F = 8x-|_ + 10x
2

- X]_
2

- xp2

subject to the constraint

3xx + 2x2 < 6

The D-matrix is negative definite. The problem would be set us as follows:

/*ID

// EXEC SOUPAC
//SYSIN DD *

QUAD (1) (C)(2).

END SOUPAC
DATA(? (F2.0,2F3-0)
-2

D -2 10 c

A END#
/*

b
b

The extreme value of the objective function for this example is .213E02

THREE STAGE LEAST SQUARES ESTIMATION

I. GENERAL DESCRIPTION

The Three Stage Lease Squares Estimation program calculates three stage

least squares estimates and an asymptotic covariance matrix. A raw data
covariance matrix and two stage least squares residual covariance matrix
are the necessary input. Calculations are carried out an in "Econometric
Theory" by Arthur S. Goldberger, pp. 3^7-352. The coefficients may also be

stored for use with the Econometric Reduced Form and Residual Analysis
program.

References

:

Goldberger, Authur, S. , Econometric Theory , New York, John Wiley and Sons,
Inc. 196h.

Johnston, J., Econometric Methods , New York, McGraw-Hill Book Company, Inc.,
I960.

II. RESTRICTIONS

The raw data covariance matrix must be arranged in the K-Class Estimation
program write-up. The program has the following size restrictions: Total
number of coefficients estimated <_ 1^+0.

(NEQ x NVAR) + (NEQ x NEQ) + (NVAR x NVAR) <_ 20,000

NVAR = the total number of variables
NEQ = the number of equations estimated

Note: Endogenous coefficients are printed out first, followed by exogenous
coefficients.

III. PARAMETERS

The parameters appear on the program card following the name Three Stage
in the following order

:

Parameter
Number Use or Meaning

1 Input Address for raw data covariance matrix.
SEQUENTIAL 1-15-

2 Output Address for coefficients.
SEQUENTIAL 1-15-

3 Input Address for residual covariance matrix.
SEQUENTIAL 1-15-

h Number of equations to be estimated

5 Number of exogenous variables

THREE STAGE LEAST SQUARES
Page 2

Subparameters

For each equation a card specifying the variables in the equation must
follow the main parameter card with the following parameters

:

Parameter
Number Use or Meaning

1 Number of exogenous variables in the equation

2 Number of endogenous variables in the equation

3 to N + 2 Variable number of the N variables included in

the equations with exogenous variables first;
endogenous variables next , with the variable on
which the system is normalized last.

IV. SPECIAL COMMENTS

The Three State Least Squares Estimation program requires input from
several other SOUPAC programs. The following is an example of the steps
needed to calculate the necessary input.

V

.

EXAMPLE

K1CLASS (Tl) (T2) () () () (1) (1)

.

K2CLASS(T2)(T3)(TM()(8)(2)*1.*.

(M(2)(1)(2)(3)(M(D(2).

(M(2)(5)(6)(7)(8)(2)(l).

END P

ECON (T3)(T2)()(8)()(T5).

THREE(T2)(T6)(T5)(2)(8).

(M(2)(1)(2)(3)(M(D(2).

(M(2)(5)(6)(T)(8)(2)(1).

END P

Notice that the equation control cards for both K2CLASS and Three-stage

Least Squares must be in the same order.

Also notice that an ENDP card is required after the equation cards.

SPECTRAL ANALYSIS SECTION

AUTOCORRELATION AND SPECTRAL ANALYSIS

General Description

The calculation of autocorrelation coefficients and the determination

of power spectra are of interest to economists in the study of time series

and others whose interest leads them to suspect some repetition of variation

within a set of observations. For a single variable, the autocorrelation,

rp , is calculated as follows:

(N-p) IX. X. - £X.£X.

^ "
[(N-p) tt* - (2X.)

2
]

1/2
[(N-p) ZX

i+p

2
- ^

i+p)

2
]
V2

N is the total number of observations; p is an arbitrarily chosen time lag.

The power spectrum is a Fourier transformation of the autocovariances and

is used in the harmonic analysis of Xj_ as a function of time. Raw estimates

of the spectral density are given by formula (2) and a smoothed value is

given by formula (3)

:

(2) L
p

= W + 2 ZW
q

cos SM + Wm cos pfl

(3) U = 0.23 L + 0.5^ L + 0.23 L
p+1

This program, however, not only will calculate values of X^ with X.
+ ,

but will calculate values for all possible pairs of variates, Xj_j with
X
i+P,j-

For a more detailed discussion, see:

R. W. Southworth, "Autocorrelation and Spectral Analysis"
from Mathematical Methods for Digital Computers , by Anthony
Ralston and Herbert Wilf; John Wiley and Sons, i960, pp. 213-20.

II. Restrictions

This program is designed to accept from 1 to 15 variables. The number
of observations is limited to 2500 or less. Since all possible pairs of

lagged cross-correlations are printed for values of p from p to p + kd (p,

k, and d are set by program parameters), the output under maximum circumstances
will be very large. The value of p is limited to 1500 or less. Current
literature suggests that for a correlation between Xj_ and Xj_ +p, the value of

p should not exceed 10 per cent of the total number of observations. It

should be pointed out, however, that a set of observations, Xj_, can be

broken up into blocks of equal size, and the several blocks can be treated as

additional variables. In this way, the value of p can exceed 1500 and also

the value of N can exceed 2500.

Ill . Parameters

Data may be read from the program either from cards or from any temp-

orary storage medium. In the output, X is the lead variable and Y is the

lag variable.

AUTOCORRELATIONS
Page 2

The call card will have the program name first. After this the para-
meters are in the following order:

Parameter
Number Use or Meaning

1 Input Address. CARDS or SEQUENTIAL 1-15-

2 An integer number denoting the minimum number
of lag periods, p.

3 An integer number denoting the maximum lag,

p + kd, at which time the execution of the
program is terminated.

h An integer number denoting the increment, d,

-to be added to p, so that the lag period can
be altered.

Parameters 3 and k will be useful generally when one wants to study the
changes in the power spectra as a function of lag length.

5 The presence of a number greater than
indicates that the means, standard deviations,
and correlations are to be printed.

6 Standard SOUPAC output parameters consisting of
an output address, and/or / PRINT, and/or /X.
If the punch or print option is chosen, then
the quantities output are the lag period, auto-
correlation coefficient, autocovariance function,
raw spectrum, and smoothed spectrum in 15, !+El8.8

format

.

7 A number greater than indicates that the lead-
lag sums and cross-products are to be printed.

If a parameter is left blank, this is the same as specifying a zero. It
should be pointed out that the output for several variables is quite large,
and unless there is interest in the output, several of the parameters should
be left as blanks.

SCALE ANALYSIS PACKAGE

CLIQUE ANALYSIS

I- General Description

This routine is designed to enumerate all third order or higher
interrelationships (communication chain) which exist in a sociometric
matrix. The algorithm is identical to the method described by Harary
and Ross. A communication chain is considered to be any submatrix of
order three or more in which all the off diagonal cells are full.

II- Restrictions

The maximum dimensions for an input array is 190 x 190. Input may
come from cards or any temporary storage area. The array must contain
only zeroes and ones in its elements. Any number greater than zero is
considered to be one; therefore, care should be used in constructing the
array. Symmetry in the input matrix is not necessary since the program
automatically forces symmetry through element-wise products. It is
suggested that TRANSFORMATIONS be used to modify input arrays when various
cut-off points are used to distinguish ones from zeroes.

III. Parameters

The name CLIQUE ANALYSIS appears first on the program call card and
is followed by the following parameter:

Parameter
Number Use or Meaning

1 Input Address of data array.
CARDS or SEQUENTIAL 1-15.

IV. Special Comments

The following is an illustration of the clique detection concept.

Data matrix:

1 1
1

°

1 lie c

1 1 1 I 1

1 1 1

1 1 1 1 1
1 1 1 1]

1] 1

,
] 1 1

Oj oj 0! ll 1 ll

CLIQUE ANALYSIS
Page 2

Clique (1) 1, 2, 3
Clique (2) 8, 6, 7, 9
Clique (3) k, 3, 5

Clique (k) 3, 5, 6

Clique (5) k, 5, 7

Clique (6) 5, 6, 7

Harary and Ross, "A Procedure for Clique Detection Using the Group Matrix",
Sociometry , Vol. 20, No. 3, 1956, pp. 2-5, 215.

October 10, I969
S0UPAC(Statistically Oriented Users Programming and Consulting ">

PAIRED COMPARISONS

General Description

Paired comparisons is a method of obtaining empirical estimates of

the form "stimulus J is judged greater than any other stimulus i." Each

stimulus in turn serves as the standard; that is, all possible pairs of

stimuli are compared. With n_ stimuli, there are n (n-l)/2 pairs.

Comparisons of a stimulus with itself is disregarded; it is assumed
that a proportion of 0.05 would result. In the following m = no. of

subjects = sample size.

Each subject's preferences are tabulated, and the total number of

times he preferred each stimulus is computed producing, A , an n x n

matrix of l's and 0's , k = 1, m. Totals for each stimulus and a grand
total are computed for each subject and this m x n + 1 matrix is

referred to as individual preference sums. The individual tables, A ,

are summed over all subjects to form an n x n frequency matrix F,

whose elements (fij) denote the observed number of times stimulus j was

judged greater than stimulus i.

The matrix of proportions, P, is then computed from F, so that p. .

is the observed proportion of times stimulus j was judged greater thanJ

stimulus i. The matrix X is derived from P by reference to the normal
curve; x. . is the unit normal deviate corresponding to the element p...
These are the sample estimates of the values required to determine the
scale values of the stimuli. The scale values are computed by summation
producing s., a least squares estimate of the scale value of stimulus j.

J

II. Input

A. Both an indication of ordering for each pair and an array of
subjects' choices are required. The former must be given as a set

of pair subparameter cards and the latter as an observation of

data for each subject in a data deck.

B. In the subjects deck one number is used to denote the subject's

choice for each pair. This choice may be "is greater than,"
"is better than," "is brighter than," etc. This number is 1 if

the subject chose the left, or first stimulus, 2 if the subject

chose the right or second stimulus. No other coding is acceptable.

C. The pair cards consist of one mention each of every possible pair

of stimuli. The order of the pairs is the same as the order of

the subjects' choices, i.e. pair 1 corresponds to item 1 of the

subject array. The order of the elements in the pairs is reflected

in the subjects' choice deck, if (5>T) corresponds to a 1 then
the subject chose stimulus 5 over stimulus 7» if (7,5) were the

pair, a 2 corresponding would mean stimulus 5 preferred. Note that

one set of pair specifications serves for all subjects.

PAIRED COMPARISONS
Page 2

III. Formulas and Calculations

A. INDIVIDUAL PREFERENCE SUMS

Let A "be an individual preference frequency table, a. . , is an
element of A, i=l , n, j=l, n, where n is the number or stimuli

a. . = 1 if an individual chose stimulus j over
stimulus i.

a. . = if the individual chose stimulus i over j

a. .
= a. . = no stimulus is compared with itself,n JJ

Individual preference sum for stimulus j = I a.

.

i
1J

Error messages concerning incorrect frequency tables refer to the
configurations of Table A. A can be correct only if subject data
and pair cards are correct

.

STIMULUS PREFERENCE FREQUENCY TABLE, F

Given the matrix A for each of m subjects
m

Stimulus preference frequencies = f . . = Z a
U k=1

ij

C. TABLE OF PROPORTIONS, P

If m is the sample size, i.e. number of subjects, then,

f . .

P.. ="iL
ij m

D. TABLE OF NORMAL DEVIATES, Z

Let p. . be an element of the table of proportions:

Then let

e -

e.. = log (1/Pi .

2
)

2.515517 + .802853xe + .010328xe
2

1. + l.i+32T88xe + .l89269xe
2

+ .001308xe
3

producing a z for each e. .. Critical values of p occur at , 1

and .5 so adjustments are made for these values before the formula
is applied and sometimes after.

PAIRED COMPARISONS
Page 3

E. SCALE VALUES, S

s. = X J

J , where n is the number of stimuli
ii

Then total scale = L S
i

J
J

A row of scales and a total of length n + 1 is calculated.

IV. Output

Matrices for individual preference totals =„* q
always printed. Other intermediate resu^F ^L V V S

'

on option. All matrices mav h« !+
^sults F, P and Z may be printed

in F format. F, P and Z are n x n ™? "
°Ptl °n

-
Ml rSSUltS are Printe*

aremxn + 1 and n + 1\L ,• T feS> individual totals and S

The A matrix I.^^cS^rSj'S^S = *» calculations).

v
- Restrictions

A
' ^^o™ SSS ^E^^st

1
\' '^ The- e " n° -friction on toe

sublets shoSrn:;e ss^rs:.""'
be paired "ith^ °th- «•

pairs (te sti^li) ^ be inSerted t0 * "»*™ °f 881

n(n-l)

* =—
.

Any other relationship is invalid.

D
'

the'fir

J

5 ' 7
- V ^^ thSn (7 ' 5) is invali *' Also, if this is

"LuluT^^^^
VI- Parameters

the p^eters^ S&£££?*»"""• °" »» ** ™* —
Parameter

^S^r Use or Meaning

1

2

Input Address of data. CARDS, SEQUENTIAL 1-5.

Output Address of individual preference sums.Always printed. SEQUENTIAL 1-5.

n

sS^TTAf 1

S

S

°f
,f

lmUlUS Preference f-auency tableSEQUENTIAL 1-5 and/or PRINT; if not desired, leaveparameter Wnr,v '
a,eparameter blank.

PAIRED COMPARISONS
Page k

Parameter
Number Use of Meaning

k ft Output Address of proportions. SEQUENTIAL 1-5 and/
or PRINT; if not desired, leave parameter blank.

5 ft Output Address of normal deviates. SEQUENTIAL 1-5
and/or PRINT; if not desired, leave parameter blank.

6 Scale Values. SEQUENTIAL 1-5, always printed.

ft It is possible to punch the output from these parameters while
executing this program. If you need this option, see the section in
the Introduction on Input and Output. Any storable output may be
punched using the Matrix program.

VII. Examples

A.

/*ID <accounting information>
// EXEC SOUP
//SYS IN DD *

PAIRED COMPARISONS (C)()(P)(P)(P).
PAIRS (l,2)(3,l)(i+,l)(3,2)(2,U)(it,3)
END P

END S

DATA(6)(6F1.0)
122211
222111
121122

END #

/*

Print has been indicated for all output except individual preference
sums and scale values which are always printed.

The pairs card indicates that there are k stimuli. All possible
pairs of these stimuli are presented to the subjects, and the subject's
responses are recorded in the order (l,2), (l,3), (l,M, (2,3), (2,4),

(3,^). Some of these pair members have been inverted indicating that

no special order is required, left member or right member preference of

subjects would, of course, be affected by the inversion.

The pairs need not be given in the increasing order of the example,
but at all times the order of the pairs is the order of the corresponding
subject responses .

The data deck is a set of subject responses for each pair of stimuli.

PAIRED COMPARISONS
Page 5

B.

/*ID<accounting information
// EXEC SOUP
//SYSIN DD *

TRA (C).

C0N(900)*1*.
ADD (l,625)(900)(l,625).
OUT(Sl)(l,625).
END P
PAI(S1)()(S2/P)()(P).

PAI(5,3)(2,8)(1+,16)(7,26)(8,3)()(U,13).
PAl(25,2l+)(23,28)()(U,12).

END P

END S

DATA(325)(T5F1.0)
Data Deck— 5 cards per subject

END#
/*

This example shows a program for 26 stimuli, 26 x 25/2 = 325 is

the number of pairs required and the number of subject preferences.
Since no more than 300 pairs may be given per pairs statement at least
two pairs statements are needed, two are shown. The unique pairs may-

occur in any order, the subject responses are in the same order.

The Transformations program shown is designed to correct subject
responses punched zero/one or blank/one to 1 and 2.

A selection of possible output has been made. Note that
individual preference sums and scale values , as well as normal deviates
and stimulus preference frequencies are printed. The latter is also
stored. This storage implies some further use is made of the frequencies,
perhaps in the missing part of the program.

VIII. References

Torgerson, Warren S. Theory and Methods of Scaling . John Wiley and
Sons, New York; I960, pp. 166-173.

Edwards, Allen L. Techniques of Attitude Scale Construction . Appleton
Century, Crofts, New York: 1957, pp. 19-52.

SCALOGRAM ANALYSIS

General Description

The SCALOGRAM ANALYSIS (mnemonic : SCA) was developed to provide a

method of producing Guttman scales automatically without the need of
external decisions to determine which items do and which items do not enter
into Guttman scales. Items are grouped together in as few as possible
submatrices with each subgroup having a maximum homogeneity within each
submatrix. Each item from the total group is chosen to fit into only one

submatrix.

The SCALOGRAM program is started by choosing an item from the total
group and then it searches the remainder of the items to find an item
similar to the item chosen. Similarity is tested by using an error cri-
teria and a chi- square test to insure that the items are similar. If the

above criteria are met, this item is added to the first item and a scale
is formed. This last item is then used to find another similar item and
this procedure continues until either of the two criteria is not met.
Whenever a criteria fails, the scale is terminated and a new scale is

started.

SCALOGRAM will only work for dichotomous data and it can be used
to analyze both subject-wise and item-wise. SCALOGRAM differs from
Guttman analysis in three ways: l) It uses an empirical rather than a

rational basis for selecting items to enter a scale. 2) It uses a

statistical method of deciding on groups and for testing the scale-
ability of the item. 3) It yields multiple scales rather than reject
the scale hypothesis for the whole item set.

SCALOGRAM can be considered to be more descriptive than the raw data
but less than factor analysis. SCALOGRAM also is unlike factor analysis
in that SCALOGRAM is not bound to linear assumptions about the regressions
involved. Factor analysis is set up to study quantitative variables and
will not show correct relationships between qualitative variables, SCALOGRAM
will show what relationships do exist between qualitative variables. (See

Guttman 1950 for a complete discussion of the relation between the scalogram
technique and other statistical procedures). (See Lingoes 196~3 f°r "the

complete algorithm for SCALOGRAM)

.

References

:

Guttman, L. "Relation of Scalogram Analysis to other Techniques."
In Stouffer, et al., Measurement and Prediction . Princeton, N.J.

:

Princeton University Press, 1950 (P. 172-212).

Lingoes, J. C. "Multiple Scalogram Analysis. A Set-Theoretic Model
For Analyzing Dichotomous Items." Educational and Psychological
Measurement XXIII (196"3), 501-524.

Lingoes, J. C. "A Multiple Scalogram Analysis of Selected Issues
of the 83rd U.S. Senate." American Psychologist, XVII (1962), 327-

SCALOGRAM ANALYSIS
Page 2

II Parameters

The program mnemonic is SCA. The following parameters appear on
the program card

:

Parameter

1

2

3

Use or Meaning

Input Address

Address of Labels

A 1 indicates that the matrix should be
transposed

III.

Since the program scales by columns or items, to scale by subjects
the matrix must be transposed.

Labels can be used to describe items; they can be input from cards
or tape. A maximum of 28 characters is allowed per label and they should
be expressed as follows: DATA(n) (nA.U) where n< 7 • A separate card for
each label is most convenient to use with the description in the first
28 columns. If both labels and data are being input from cards, labels
must precede data.

Restrictions

Both the number of items and the number of subjects is restricted
to U90. Lables are restricted to 28 characters.

Data must be coded as O's and l's. If data is not of this form,

TRANSFORMATIONS may be used to recode it.

IV. Example

s

SCA(C) (C)(1).
ENDS
DATA(7M7A^)

labels

END//

DATA(U0)(i+0F1.0)

data

END/'

Labels and data are on cards, 28 columns are used for labels and scaling
will be done by rows.

SCALOGRAM ANALYSIS
Page 3

SCA(Sl)

.

ENDS
DATA(30)(30F1.0)

! data

END#

Data is on SEQUENTIAL 1 and scaling will be done by columns

PROBIT ANALYSIS SECTION

PRCBIT (Mnemonic: PRB}

General Description

This program calculates maximum likelihood estimates for the parameters
A and B in the probit equation

:

Y = A + BX

An iterative scheme is used.

II. Restrictions

The input vectors must be equal length k and:

input vector comes from a separate input address.
3 < k < 3000. Each

III. Parameters

Parameter
Number Use or Meaning

Input vector of dosage level.

SEQUENTIAL 1-15-
CARDS or

Input vector of number of subjects tested
at each dose level. CARDS or SEQUENTIAL 1-15-

Input vector containing the number of
subjects-at each level responding to the
drug. CARDS or SEQUENTIAL 1-15-

Output vector of length k containing the
proportion of subjects responding to the
various close levels of the drug. SEQUENTIAL 1-15,
and/or PRINT.

Output vector of length k containing the values
of the expected probit for the various levels of
the drug. SEQUENTIAL 1-15 and/or PRINT.

Printed output consists of:

1 - Estimate of intercept constant A

2 - Estimate of probit regression coefficient B

3 - Chi-square value for a test of significance of final
probit equation

X -
f=1 N^id - Pi)

where R^ = number of responses (input address 3)

Ni = number of objects tested (input address 2)
Pj_ = cumulative normal distribution values corresponding

to Z
i
where Z± = (A + BXi) - 5

where A and B are from final probit equation

h - Degrees of freedom for X
d.f. = k - 2

References

:

D. J. Finney, Probit Analysis , Second Edition, (Cambridge University Press

1952).

The program was adapted from the IBM Scientific Subroutine Package,
360A-CM-03X, Version III, page kk.

IV. Example

If two or more input addresses are cards , the cards must be stacked
in order of their parameter numbers. For example:

/*ID

// EXEC SOUPAC
//SOUPAC.SYSIN DD *

MAT.

MOVE (CARDS)(SEQ2)
END P

PRB (CARDS) (SEQ2) (CARDS) (PRINT)

.

END S

DATA(1)()

: cards for SEQ 2

END#
DATA(l)()

Cards for Parameter 1

END#
DATA(l)()

Cards for Parameter 3

END#
/*

NOTE The mnemonic for PROBIT is PRB, nor PRO.

RANDOM NUMBER GENERATION SECTION

RANDOM NUMBER GENERATOR (Mnemonic: RND)

I. General Description

This program calculates a matrix of normally distributed random
numbers. An approximation formula is used to normalize uniformly
distributed random numbers

k

Y =
i=l

Xi 2

s/k/12

where the Xj_are the uniformly distributed random numbers, and Y is the

normally distributed number with mean zero (0) and standard deviation
one (l) . K is set to 12 by the program. Y is then transformed to the
input scale by multiplying by the standard deviation and adding the mean.

II. Parameters

Parameter
Number

k

5

Use or Meaning

Input Address of 9 (nine) digit odd integer
used as a starting point for the random
number generator. CARDS or SEQUENTIAL 1-15.

Output Address of random numbers matrix.
SEQUENTIAL 1-15. PRINT is not valid .

Mean of random numbers enclosed in asterisks,
i.e., *0.0*.

Standard deviation, i.e., *1.0*.

Number of rows in output matrix of random
numbers.

6

7

III. Special Comments

Number of columns in output matrix of random
numbers.

Output Address of 9 digit integer which is
finishing point of the random number generator.
Do not specify PRINT since number is automatically
printed.

If this program is used with the same integer starting point, it will
generate the same numbers. Thus, use Parameter 7 to output the finishing
location, and then pass that address as the starting location for the next
use of this program.

V. Reference

IBM System/360 Scientific Subroutine Package (36OA-CM-O3X) Version III
page 77.

UTILITY

UTILITY PROGRAM

I. General Description

The UTILITY program has been designed to handle small utility functions
which do not necessitate or justify the creation of a unique program within
the SOUPAC system. The following statements will invoke the UTILITY program.

UTILITY.
(insert subparameter card or cards here

END P
The following sections describe the functions of the various subparameters

,

II. PRESORT Program

The PRESORT Program is presently the only program in the UTILITY program.

It is used to set up the data cards to be input into the IBM SORT/MERGE
package which will be executed following the present SOUPAC program and
before another SOUPAC program which will use the sorted data for an input.

SORT (0 or l)(0 or l)(V1), (vn),

Parameter
Number Use or Meaning

if data is to be sorted in ascending order.
1 if data is to be sorted in descending order.

if data to be sorted is in single precision.
1 if data to be sorted is in double precision.

3 through n <_ 20 indicates the variable or variables to be sorted
with the later variables, if any, varying most
rapidly.

Following the SOUPAC program in which the UTILITY program appears

,

the following card must appear

:

// EXEC S0UPS0RT,INPUT=Snn,0UTPUT= Smm.

where nn and mm represent the two digit equivalent of the sequential unit
numbers to be input to the sort and output from the sort to the next SOUPAC
program. The two units must not be the same.

The next card will start the next SOUPAC program which will operate
under the assumption that the sorted data has been supplied on the
specified sequential unit in the output of the S0UPS0RT program.

// EXEC SOUPAC,DISP=0LD
//SYSIN DD *

(Your program which uses the sorted data)

UTILITY
Page 2

The example given below is for sorting cards input data so that it
may be input into a FREQUENCY program which uses variable 5 as a control
variable.

/*ID identification card information
// EXEC S0UPAC
//SYSIN DD *

MATRIX.
M0VE (CARDS)(Si).

END PR0GRAM
UTILITY.
S0RT(O)(1)(5).
END PR0GRAM
END S0UPAC
DATA(10)(10F5.0).

(user's data deck)

END #

I*

II EXEC S0UPS0RT,INPUT=SO1,0UTPUT=SO2
// EXEC S0UPAC ,DISP=0LD
//SYSIN DD *

FREQUENCY (S2).

TW0.

PER(1)(1)(1).
C0NTR0L(5).
END PR0GRAM
END S0UPAC
/*

The data on SI is sorted in ascending order on variable 5- The data is
passed to the SOUPSORT job step on SI in double precision. This data is
sorted on variable 5 and then output onto S2 in double precision. It is
then input into the FREQUENCY program of the next SOUPAC job step, whereupon
analysis continues.

III. Notes, Restrictions, and Ideas

1. The default output from MATRIX is in double precision

2. The output from TRANSFORMATIONS is in single precision

3. Only one utility program is allowed per SOUPAC program

h. If other sequential units have been used during the first SOUPAC
program besides the one passed to the sort job step, they are still
intact and usuable in the second SOUPAC program due to the DISP=OLD
parameters

.

*PB-720Q"3'
5-IdT

C

!> PERMA BOUND*!

